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Motivation: Event causal analysis to answer the question “who 
caused this?”

▪ Data: Marked (=multivariate) event sequence
o Collection of (timestamp, event type)

✓ tn :  time stamp of the n-th event

✓ dn : event type of the n-th (one of {1, …, D} )

▪ Typical application: AIOps
o “Artificial Intelligence for IT Operations”
o Many (sub) modules of the IT system generates many 

error/warning events
o They are massive and myopic: making sense of what 

caused what is very challenging even to experienced 
engineers

Event log

Who caused this 
event instance?
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Problem setting: For event causal analysis, we wish to find instance-
and type-level causal relationship

▪ Given

▪ Find
o Instance-level triggering probabilities (for each instance)

o Type-level causal relationship
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Self-exciting point process (aka Hawkes process) is a good fit for our 
problem

▪ Hawkes process has been used in seismology to 
associate aftershocks with major earthquakes
o Y. Ogata, "Seismicity analysis through point-process modeling: 

A review." Seismicity patterns, their statistical significance and 
physical meaning (1999): 471-507.

▪ Key quantity: event intensity function λd(t | Ht)
o Probability density of event occurrence in the future, given 

event history Ht and an event type d

* Picture source: Swiss Seismological Service, 
http://www.seismo.ethz.ch/en/home/

now

What is the occurrence 
probability of an event 
type d in this moment?

event history

http://www.seismo.ethz.ch/en/home/
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For event causal analysis, we employ a point-process model called the 
Hawkes process

▪ Hawkes Intensity model
o Intensity of event type d, given an event history H

▪Maximum likelihood fitting of the impact matrix is the same as uncovering 
type-level Granger causality [Zhou+13][Eichler17] etc.

o Example: If A2,3=0, the type-2 event is not caused by the type-3 event

decay function (depends on d)
→ triggering effect

baseline intensity
→ spontaneous effect

timetlast t

impact matrix: type-level causal relationship

Typical decay models
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Sparse learning is critically important for practical event causal 
analysis

▪ Granger causality: If Y shifted backward in time 
has a significantly high correlation with X, 
then X is a cause to Y. 
o Tricky part: “significantly high”

▪ Sparse learning provides a way of systematically ruling out unlikely options 
from a huge # of possibilities
o My PC in NY froze because of a flip of a butterfly in Tibet? 

o Did the sunshine cause Meursault to commit the murder? (Camus, “The Stranger”).

Event log
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Vanilla minorization-maximization (MM) framework

Jensen’s inequality

{ qn,i } A μ1,…, μD β1,…, βD

4 types of parameters,  4 optimization problems

instance triggering probability impact matrix baseline intensity decay parameter

tightest bound (given A, μ, β)

analytic solution is known under 
L2 regularization, given {qn,i }

our focus 
→ next section

iterate until 
convergence

Log likelihood
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Finding the tightest bound of Jensen’s inequality

▪ The optimization problem to solve for each n = 1, …, N
o

✓ 𝒒𝑛 = [𝑞𝑛,0, … , 𝑞𝑛,𝑛]
⊤

o Lagrangian

▪ The objective is convex upward and has a maximum
o (proof) Differentiate w.r.t. 𝑞𝑛,𝑖 twice to get −1/𝑞𝑛,𝑖, which is always negative.

▪ The optimality condition is obtained by equating the first derivative of ℒ to 0
o Resulting in:

o The sum-to-one constraint leads to the solution shown previously

{ qn,i }
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Leveraging Jensen bound for instance-level event causal analysis

▪ The tightest Jensen bound is achieved if

▪ This can be interpreted as the probability that the i-th event caused the n-th
event, which we call the causal probability

▪We use this for instance-level causal analysis

(ti , di) (tn , dn)

“I just got an event (tn , dn).

Tell me which event caused 
the particular event?”

{ qn,i }
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MM solution for the baseline intensity 𝝁 = [𝝁𝟏, … , 𝝁𝑫]
⊤

▪ Log-likelihood lower bound (collecting terms related to 𝝁) with L2 regularizer
o

o Second derivative is always negative → convex upwards, a maximum exists

▪ Getting maximizer by equating the first derivative to zero
o

o This is a quadratic equation and can be easily solved:

μ1,…, μD
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MM solution for the decay parameter  𝜷 = [𝜷𝟏, … , 𝜷𝑫]
⊤:

General solution

▪ Log-likelihood lower bound (collecting terms related to 𝜷) with L2 regularizer
o

▪ First derivative and optimality condition
o

▪ Define nondimensional decay function 𝜑(⋅) via 𝜙𝑑 𝑢 = 𝛽𝑑 𝜑(𝛽𝑑𝑢)

▪ General solution:

β1,…, βD
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MM solution for the decay parameter  𝜷 = [𝜷𝟏, … , 𝜷𝑫]
⊤:

Specific solution for the exponential and power distributions

▪ Exponential distribution
o 𝜑 𝑢 = exp(−𝑢)

▪ Power distribution
o 𝜑 𝑢 = 𝜂(1 + 𝑢)−𝜂−1

β1,…, βD
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Two contributions of this work

▪ First mathematically consistent approach to sparse causal learning through 
Hawkes process

▪ Simultaneous instance- and type-level event causal analysis for causal event 
diagnosis
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Existing “sparse” learning algorithms for A in fact cannot produce any 
sparse solutions

▪ Objective function to be maximized

▪ Existing sparse causal learning approach use L1 or L2,1 regularizer:

o Theorem 1: For p ≥ 1, this problem is convex and has a unique solution. The solution 
cannot be sparse, i.e., 𝐴𝑘,𝑙 ≠ 0, if 𝑄𝑘,𝑙 ≠ 0 and 𝜈𝐴 ≠ 0.

added L2 
regularizer

Proof: Simply because  ln 0 = −∞
and thus 0 is not allowed (easy!)
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How do we get a sparse solution in a legit way? 
Introducing L0-regularized problem with “𝝐-sparsity”

▪ Proposed problem of our Hawkes-Granger framework:

▪ Singularity remains at zero

▪We introduce a “zero-ness” parameter 𝜖 and solve:

o c.f. [Phan&Ide SDM19] for the first proposal of 𝝐-sparsity.

vectorized 

version

Semi-analytic solution exists: 
Rare example of “solvable” 
L0-regularized problem. 
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▪ Objective function has a jump at 𝑥𝑚 = 𝜖

▪ The solution covers the three cases below
o Analytic solution using KKT conditions →paper (easy)

Solving L0-regularized impact matrix estimation problem
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Comparison with “sparse” Hawkes algorithms: 
Do they produce a sparse impact matrix?

▪ Generated 10-dimensional synthetic event data

▪ Trained L1- and L2,1-regularized Hawkes models with many different 
regularization strength values

▪ Visualization of flattened impact matrix 

10x10 impact 
matrix

flatten

Pure yellow = 
(𝜖-) zero 

Smooth color 
gradation (=nonzero)

L1 L2,1

Smooth color 
gradation (=nonzero)

L0Hawkes
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Comparison with neural Granger approaches: 
Can they reproduce a true type-level causal graph?

▪ State-of-the-art neural Granger models [Tank+21]
o cMLP: component-wise multi-layer perceptron 
o cLSTM: component-wise long short-term memory

▪ Generated synthetic 5-dimensional event data with a very simple causal graph
o For neural methods, the event data were converted into regular time series of counts

▪ Evaluated as a binary classification problem for each edge
o True positive and true negative accuracies

▪ Why neural methods failed?
o mainly due to equi-time-interval assumption
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Application of instance-level causal analysis:
Event grouping for IT system management

▪ Real data center warning/errors over about two 
months
o N=718, D=14

▪ (top) Instance triggering probabilities {𝑞𝑛,𝑖}
o Sparse due to the sparsity of impact matrix A and time 

decay effect

▪ (bottom) The 150-th instance (type ETH_INIT)
o ETH_INIT: event type related to network initialization

o Network-related events are reasonably associated

o Noise event type “UPDOWN” is successfully 
suppressed

✓ Informational event type that accounts for more than a half 
of instances
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Summary

▪ Proposed a new L0-regularized Hawkes process for guaranteed sparsity

▪ Showed that existing sparse Hawkes models do not yield sparse solution

▪ Developed a new approach to event causal diagnosis, which leverages 
simultaneous type- and instance-level causal analysis


