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Motivating use-case: Building energy management.
Deviations from the model need be explained.

— actual

" Building admin wants to keep healthy condition BEEHTG AR
of building’s air-conditioning system

" He got prediction model built on data under
normal working conditions.
o Y: building energy consumption
o X: Temperature, humidity, day of week, month, room
occupancy, etc.

" Then, any large deviations imply a suboptimal
situation.
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“Doubly black-box” is the most common industrial setting.

" Qur task: Anomaly attribution
o Compute responsibility score of each
input variable
" Constraint: “doubly black-box”

o Able to access model’s API
o Not able to access training data

o Not able to access internal model
parameters

= Note: typical end-users are not ML

researchers!

o Even you have access to the source code,
the model can be a black-box

anomalous sample

(x5 %)
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(unavailable) : o
_________ I attribution score
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Technical task: Compute responsibility score of each input variable,
given test sample(s).

Input B - Output
Black-box regression function respon sibiIity score
Y = f({I;) computed locally at (x¢, y):
Test sample
ample(s) N J 5,y s By,
showing
. LSTAT
anomaly/deviation B
- o PTRATIO |
t ot RAD
(%, y) anomaly attribution DS mm
: RM
t-th test sample algorithm NOX 1
CHAS
INDUS
ZN

(from Boston CRIM 1
Housing example)



IBM Research

Contents

" Problem setting

" Review of existing attribution approach

" Introducing Likelihood Compensation

" Experimental results

]
Summary The main part of this talk has been published as:

T. Idé, A. Dhurandhar, J. Navratil, M. Singh, N. Abe, “Anomaly Attribution with
Likelihood Compensation,” Proc. AAAI 21, pp.4131-4138.



IBM Research

Major attribution approaches:
LIME, Shapley value (SV), and Integrated Gradient (1G)

" Local linear surrogate modeling (LIME)
o Attribution score = i-th variable’s gradient estimated

locally at xt
" Integrated gradient (IG) .
1
T 1Giat (2% 2 @l —af) [ da o |
0 dx; 20+ (zt —x9)a

» Shapley value (SV)
o) M-—1 . —1
i) =gp X (V1) X letel) ekl

——

* Not intuitive.

 Tend to be used
as a black-box!

conditional expectation, given

S;, a subset of the variables



IBM Research

Major attribution approaches:

LIME, Shapley value (SV), and Integrated Gradient (1G)

" Local linear surrogate modeling (LIME)

o Attribution score = i-th variable’s gradient estimated

locally at xt

" Integrated gradient (IG)

o Attribution score = i-th variable’s contribution to the

increment from the baseline input x°
v 2i1Gi(x") = F(x) - f(x°)
= Shapley value (SV)

o Attribution score = i-th variable’s contribution to
expected increment

v ¥ SVi(xt) = f(xt) = (f)

~
7

deviation{

—--m--Q

---4——-

(x, ")

y = f(x)

local
gradient

:l' increment

baseline input
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Hidden secret: Existing “anomaly attribution” methods do not explain
deviations!

" Local linear surrogate modeling (LIME) ~
o Attribution score = i-th variable’s gradient estimated - Provides local gradient
locally at xt

J |

" Integrated gradient (IG)

o Attribution score = i-th variable’s contribution to the
increment from the baseline input x°

vV 506 (xt) = f(x") = f(x°)
= Shapley value (SV)

o Attribution score = i-th variable’s contribution to
expected increment

v 3 SVi(xf) = f(xt) = (f) _

_ Explain increment
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Hidden secret: Existing “anomaly attribution” methods do not explain

deviations! Example of LIME

Local surrogate model to explain f(x) Anomaly attribution needs to explain f(x) - y

(', y")

deviation

Yy = f(a:) local linear model :
,, AN

10
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Hidden secret: Existing “anomaly attribution” methods do not explain
deviations! LIME, IG, SV are deviation-agnostic.

" Local linear surrogate modeling (LIME)
o Attribution score = i-th variable’s gradient estimated
locally at xt

" Integrated gradient (IG)

o Attribution score = i-th variable’s contribution to the Y .
increment from the baseline input x° - dEVIatIOn
v %G (x) = f(x) — f(x°) agnostic

= Shapley value (SV)

o Attribution score = i-th variable’s contribution to
expected increment

v 3 SVi(x) = f(x) = (f)
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High-level idea: Focus on another deviation

" An anomaly implies a deviation from a certain V A another
reference poi deviation
point.
()

" Point A is typically used to determine the Q@ -
anomalousness. deviation{ B
o But is not useful for attribution purposes.
LA
=" What if point B is used? i
o How do we characterize Point B? i
t
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High-level idea: Defining responsibility score through local

perturbation as “horizontal deviation”
O : responsibility score
Local surrogate model to explain f(x) (“likelihood compensation”)
Given y, this point gives the
y y highest possible likelihood
/(wt + 67 yt)

{

Yy = f(a:) i local linear model

14



IBM Research

Likelihood Compensation (LC): Seeking a perturbation that achieves
highest possible likelihood in the vicinity

= \WWe use the horizontal deviation as the attribution LC can be thought of as the
score ‘deviation measured horizontally’

o i.e., A measure of responsibility of each variable.

" Likelihood compensation 6:
06" = argmax {Inp(y*|xt+6)}

v's.t. xt+ & € vicinity of x*

" § is a perturbation such that xt +  achieves the best

possible fit to the model

o 6 compensates for the loss in likelihood incurred by an
anomalous prediction.

15
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Gaussian-based representation of the LC problem

= When p(y | x) is Gaussian, LC’s optimization LC can be thought of as the
‘deviation measured horizontally’

problem can be written as

N 2
. 1 test t ajt _I_(s 1
mm{ Z v~/ ) + 5)\||5||§—|-V||(5||1} ;

2
Ntest i—1 20t

o of : local variance at x*
o A,v:regularization parameters (hyper parameters)

* Looks simple but challenging to solve when f (x)
is a black-box function with potential non-
smoothness.
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Generalization and interesting contrast to adversarial training

" LC’s optimization problem can be generalizaed as
o main(Loss(yt, xt +6)) s.t. x' + 8 € vicinity of x*

o (---)is empirical average over test samples and Loss is —In p(yt | xt)
o This is to compute the attribution scores for a collection of test samples

= Adversarial training
o min mgix(Loss(yt, xt+610)) s.t. xt + 8 € vicinity of x*

v’ 0 is the model parameter (unavailable in the doubly black-box setting)

o In Adversarial training, xt is normal. xt + & is abnormal (adversarial)
o InLC, xt is abnormal. xt + & is normal

17
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Solving optimization problem by iterating local smooth

approximation and proximal gradient

= f(x) is black-box. It may not be even smooth or
continuous

= 0. Local variance estimation (only once)
o Leverage available test data or prior knowledge

* 1. Local gradient estimation of f B

o Amounts to smooth approximationof f | terate

" 2. Proximal gradient update for é

—

Estimate local variance (72 (mt)

L

Initialize &) = O

JV

Estimate gradient at mt + 0
by local linear fitting

!

Update ¢) via proximal gradient

converge?

no
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0. Local variance estimation

" |f test samples available are too few, use a constant variance to define a
Gaussian observation model

o plylxz)=N(y| flx),07)

" [f some amount of test samples are available, use locally weighted maximum
likelihood to estimate an input-dependent variance

Nheldout T n 2
O o 4 ¢ { 1 (y()—f(x( ))) }
o“(x”) = max E Wy (T In - ,
(@) =1 | ( )’ V2mo? 202

Gaussian kernel I
defined for the |
specific test sample xt !

training data
(unavailable)

test data (available)
19



IBM Research

1. Local gradient estimation of f

=" We solve the problem with gradient descent

Smooth surrogate

Niest [ ¢ ot 2
© min {Ntlest > y f2(02 o, %AHMI% + V|5|1} : of gradient at x+6
i - t ]
Y
: 1 Neest gt — f(2t 4 6) <<8f(a?t+5)>> Y,
radient: + A0 t
g Ntest 1; 0-752 85 T L L

= We use a simple sampling-based algorithm
o At a given test location x!, we random-sample N, samples .
in the vicinity of xt, and fit a linear regression model
v N, ~ 1000.

v Assumption: evaluation of f(x) can be done cheaply
o The gradient is obtained as the regression coefficient.

estimated
gradient

random}samples

T

xt 4§

20
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2. Proximal gradient update for 6

" The objective now looks like L,-regularized convex-ish optimization
o { 1=y - @+ )

1
+ 5813 +V|5|1},

1) Ntest — 20'752
| _ ' ]
Ntest 2
convex-ish function with J(8) 2 1 y' — f(=' + )] 4 1>\||5||%
the smoothed gradient Ntest — 207 2

» Building an updating rule from &°9 using prox gradient-like algorithm
6 = argmin {J(8°) + (8- 8°)(vI(8°)) + =633 + va |
K

T
smooth quadratic approximation of J

1d 1d
= pI‘OXW||5||1 (50 - /‘3«V<](50 )») The L, prox operator has an analytic solution! (= paper)

21
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Condition of convergence — where the intuition of “horizontal

deviation” comes from

" The prox gradient-like update
converges when

c 1 Ni‘st yt — f(x! +6) <<8f(a:t+5)>>mo
Y

2 00

Ntest t=1 o

» Condition (a): |deviation|=0 )
o Met when yt = f(xt + )
o “Keep the height, move horizontally
until you hit f” f(z")

» Condition (b): |gradient|=0
o In case there is no horizontal
intersection, this warrants convergence

lllustration for N, =1

observed
observed

(a) |deviation| =0 (b) |gradient| = 0

22
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Baseline methods

" Existing methods either need training data or is deviation-agnostic.

training-data-free  baseline-free  y-sensitive reference point
LIME yes yes no infinitesimal vicinity
SV no yes no globally distributional
IG yes no no arbitrary
EIG no yes no globally distributional
Z-score no yes no global mean of predictors

LC yes yes yes maximum likelihood point




normalized score
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Two-dimensional synthetic data: = |
. . o e . 50 :
Existing methods are “deviation-agnostic” e | I
2 ;
= x1 should be responsible for the outliers A, B a0 X O 0oa 2 ey 02 o0 075 100
o LC, LIME IG successfully identified x1 05
o But only LC can distinguish points A and B. & 00
= SV, expected IG (EIG), Z-score suffer significant 05
variability issue due to the need for the true 10
. . . -1.0 0.5 0.0 0.5 1.0
distribution P(x). X1
X1 X2 X1 X2
s W) yi=+1 — © o (B)y'=-1 —
T % é T 6 T % é T
©
0.0 == S 00 ==
.~ T'T 5 - TT
-05 « —— — 5-05 —— -
C
2532 cP%mg 1E2S5%aa g SE53Z835 252334 g
EERCRN©] ¢ - Q0 3g ? EERCENC] ? EERCEN©] ?
N N N N 5
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Comparison with LIME+ and Z-score in building energy use-case

* One month-worth building energy data
O y:energy consumption

o x: time of day, temperature, humidity, sunrad, day of week (one-
hot encoded)

" The score is computed based on hourly 24 test points
for each day

o The mean of the absolute values are visualized
o SV+ was not computable due to lack of training data

= | IME+ is insensitive to outliers

o LIME score remain the same for any outliers, making it less useful
in anomaly attribution

= 7Z-score does not depend on y (by definition)

o The artifact for the day-of-week variables is due to one-hot
encoding

anomaly score

timeofday
temperature

dewpoint |

humidity
sunrad
daytype Fr
daytype Mo
daytype_Sa
daytype_Su
daytype Th
daytype Tu
daytype We

timeofday
temperature
dewpoint
humidity
sunrad
daytype_Fr
daytype_Mo
daytype_Sa
daytype_Su
daytype Th
daytype Tu
daytype We

timeofday
temperature
dewpoint
humidity
sunrad
daytype_Fr
daytype_Mo
daytype_Sa
daytype_Su
daytype Th
daytype Tu
daytype_We

-
o

anomaly score

-~ T T T
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Summarizing practical features of LC

= | Cis deviation-sensitive
" LC is model-agnostic

= LCis directly interpretable

o LCrepresents “what you could have done for the best fit” for each input
o Naturally provides counterfactual explanations

v LC > 0 for a temperature variable, for example, reads “To be consistent to the observed yt, the
temperature could have been higher.”

v Or simply, “Your temperature was too low for yt”

28
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My other recent works on XAl for business actionability

(Full publication list = )

= Causal diagnosis from event data

o For AlOps application (event grouping)
o Idé et al., “Cardinality-Regularized Hawkes-Granger
Model,” NeurlPS 21 [ , ].

= Actionable change detection for tensor inputs

o For semiconductor tool monitoring
o Idé, “Tensorial Change Analysis using Probabilistic
Tensor Regression,” AAAI 19 | , ].

= Project failure risk prediction through

psychometric analysis of questionnaire data
o For risk management of IBM projects

o |dé & Dhurandhar, “Informative Prediction based on
Ordinal Questionnaire Data,” ICDM 15 | ,

.

server alert events 0.3 0.4
0.2 0.1
plv X) 4 P X)
Changed?

tensor input éﬁ JL
How?

T “

000
IT system X : questionnaire
development answers At-risk? -
— Q1 yes y'
! % ® 02 | no failure or
‘" = Ty ﬂ 03 | yes success?
=
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Thank you!

30
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