Explaining Anomalies of Black-Box Regression Function

Tsuyoshi ("Ide-san") Idé / 井手 剛 tide@us.ibm.com IBM T. J. Watson Research Center

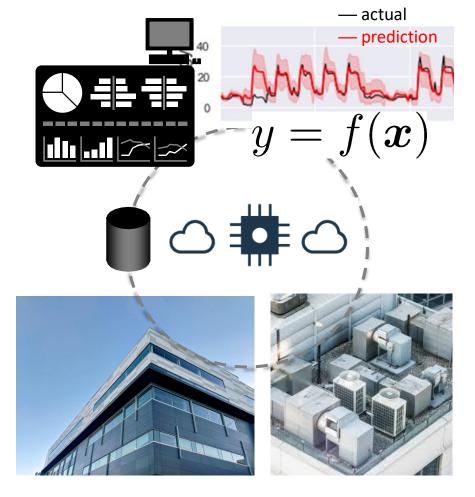
Contents

- Problem setting
- Review of existing attribution approach
- Introducing Likelihood Compensation
- Experimental results
- Summary

The main part of this talk has been published as: T. Idé, A. Dhurandhar, J. Navratil, M. Singh, N. Abe, "Anomaly Attribution with Likelihood Compensation," Proc. AAAI 21, pp.4131-4138.

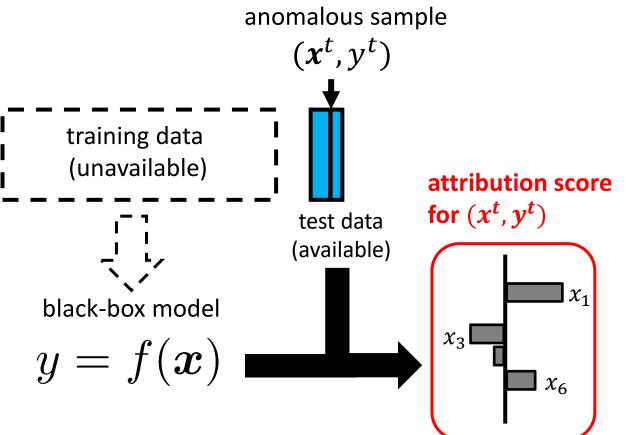
Motivating use-case: Building energy management. Deviations from the model need be explained.

- Building admin wants to keep healthy condition of building's air-conditioning system
- He got prediction model built on data <u>under</u> <u>normal working conditions.</u>
 - $\circ~$ y: building energy consumption
 - x: Temperature, humidity, day of week, month, room occupancy, etc.
- Then, any large deviations imply a suboptimal situation.

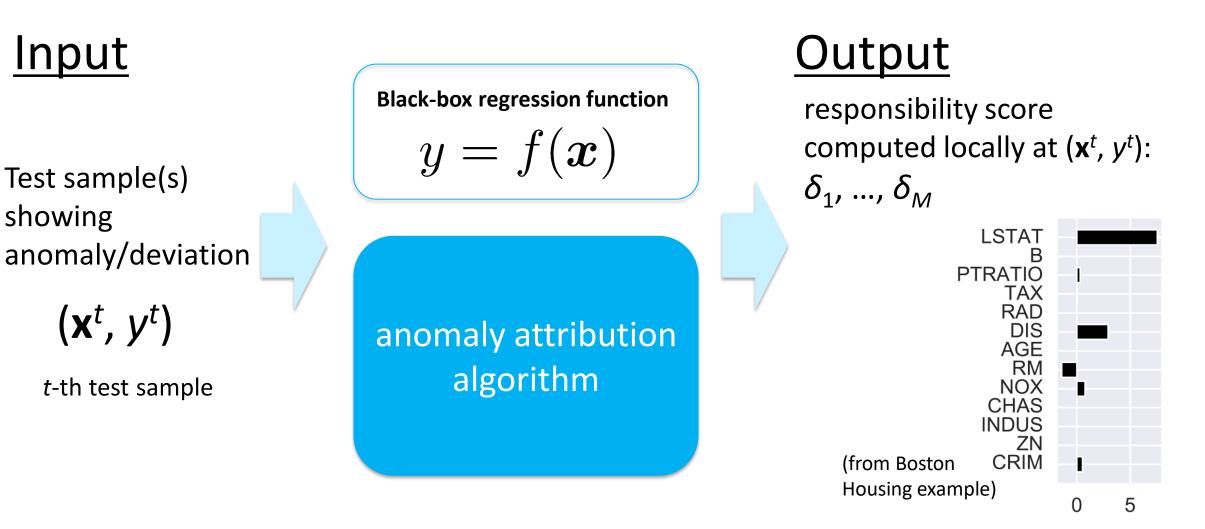


"Doubly black-box" is the most common industrial setting.

- Our task: Anomaly attribution
 - Compute responsibility score of each input variable
- Constraint: "doubly black-box"
 - Able to access model's API
 - Not able to access training data
 - Not able to access internal model parameters
- Note: typical end-users are not ML researchers!
 - Even you have access to the source code, the model can be a black-box



Technical task: Compute responsibility score of each input variable, given test sample(s).



Contents

- Problem setting
- Review of existing attribution approach
- Introducing Likelihood Compensation
- Experimental results
- Summary

The main part of this talk has been published as: T. Idé, A. Dhurandhar, J. Navratil, M. Singh, N. Abe, "Anomaly Attribution with Likelihood Compensation," Proc. AAAI 21, pp.4131-4138.

Major attribution approaches:

LIME, Shapley value (SV), and Integrated Gradient (IG)

- Local linear surrogate modeling (LIME)
 - Attribution score = i-th variable's gradient estimated locally at x^t
- Integrated gradient (IG)

$$^{\circ} \operatorname{IG}_{i}(\boldsymbol{x}^{t} \mid \boldsymbol{x}^{0}) \triangleq (x_{i}^{t} - x_{i}^{0}) \int_{0}^{1} \mathrm{d} \boldsymbol{\alpha} \left. \frac{\partial f}{\partial x_{i}} \right|_{\boldsymbol{x}^{0} + (\boldsymbol{x}^{t} - \boldsymbol{x}^{0})\boldsymbol{\alpha}},$$

Shapley value (SV)

$$^{\circ} SV_{i}(\boldsymbol{x}^{t}) = \frac{1}{M} \sum_{k=0}^{M-1} \binom{M-1}{k}^{-1} \sum_{\mathcal{S}_{i}:|\mathcal{S}_{i}|=k} \left[\langle f \mid \boldsymbol{x}_{i}^{t}, \boldsymbol{x}_{\mathcal{S}_{i}}^{t} \rangle - \langle f \mid \boldsymbol{x}_{\mathcal{S}_{i}}^{t} \rangle \right].$$

- Not intuitive.
- Tend to be used as a black-box!

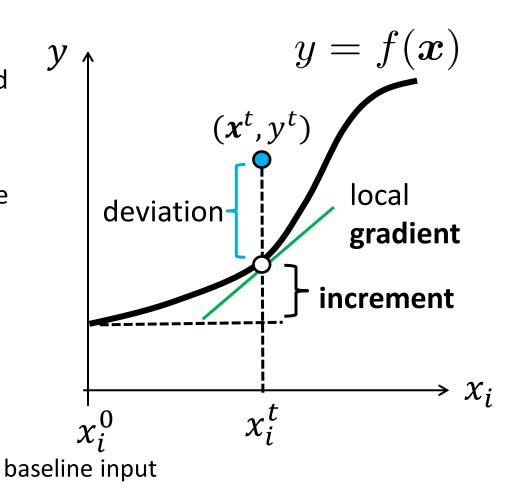
conditional expectation, given S_i , a subset of the variables

Major attribution approaches:

LIME, Shapley value (SV), and Integrated Gradient (IG)

- Local linear surrogate modeling (LIME)
 - Attribution score = i-th variable's gradient estimated locally at x^t
- Integrated gradient (IG)
 - Attribution score = i-th variable's contribution to the increment from the baseline input x^0
 - $\checkmark \sum_i \mathrm{IG}_i(\mathbf{x}^t) = f(\mathbf{x}^t) f(\mathbf{x}^0)$
- Shapley value (SV)
 - Attribution score = i-th variable's contribution to expected increment

$$\checkmark \sum_{i} \mathrm{SV}_{i}(\mathbf{x}^{t}) = f(\mathbf{x}^{t}) - \langle f \rangle$$



Hidden secret: Existing "anomaly attribution" methods do not explain deviations!

- Local linear surrogate modeling (LIME)
 - Attribution score = i-th variable's gradient estimated locally at x^t
- Integrated gradient (IG)
 - Attribution score = i-th variable's contribution to the increment from the baseline input x^0

 $\checkmark \sum_i \mathrm{IG}_i(\mathbf{x}^t) = f(\mathbf{x}^t) - f(\mathbf{x}^0)$

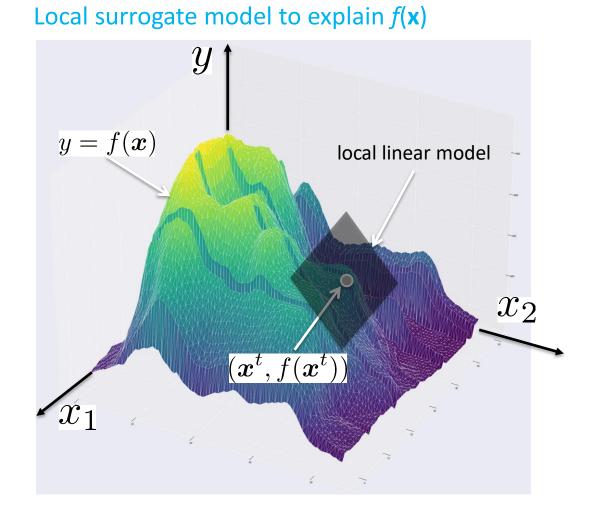
- Shapley value (SV)
 - Attribution score = i-th variable's contribution to expected increment

 $\checkmark \sum_{i} \mathrm{SV}_{i}(\mathbf{x}^{t}) = f(\mathbf{x}^{t}) - \langle f \rangle$

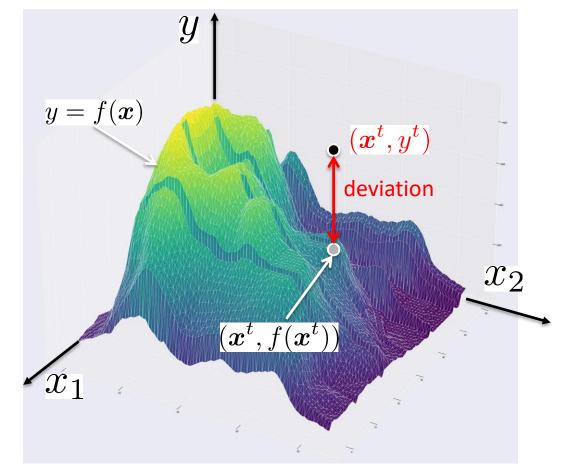
Provides local gradient

Explain increment

Hidden secret: Existing "anomaly attribution" methods do not explain deviations! Example of LIME



Anomaly attribution needs to explain f(x) - y



Hidden secret: Existing "anomaly attribution" methods do not explain deviations! LIME, IG, SV are deviation-agnostic.

- Local linear surrogate modeling (LIME)
 - Attribution score = i-th variable's gradient estimated locally at x^t
- Integrated gradient (IG)
 - Attribution score = i-th variable's contribution to the increment from the baseline input x^0

$$\checkmark \sum_i \mathrm{IG}_i(\mathbf{x}^t) = f(\mathbf{x}^t) - f(\mathbf{x}^0)$$

- Shapley value (SV)
 - Attribution score = i-th variable's contribution to expected increment

 $\checkmark \sum_{i} \mathrm{SV}_{i}(\mathbf{x}^{t}) = f(\mathbf{x}^{t}) - \langle f \rangle$

deviationagnostic

Contents

- Problem setting
- Review of existing attribution approach
- Introducing Likelihood Compensation
- Experimental results
- Summary

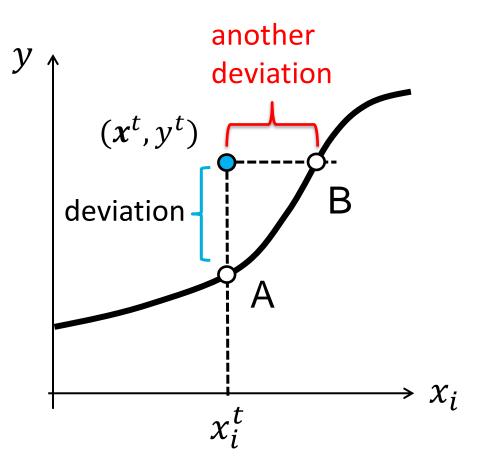
The main part of this talk has been published as: T. Idé, A. Dhurandhar, J. Navratil, M. Singh, N. Abe, "Anomaly Attribution with Likelihood Compensation," Proc. AAAI 21, pp.4131-4138.

High-level idea: Focus on another deviation

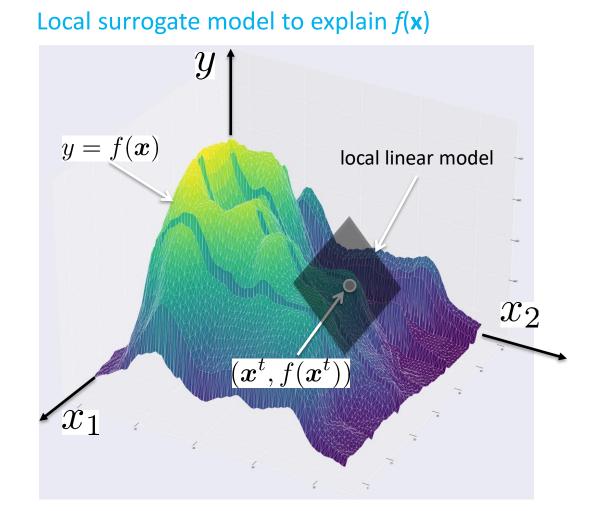
- An anomaly implies a deviation from a certain reference point.
- Point A is typically used to determine the anomalousness.

 $\circ~$ But is not useful for attribution purposes.

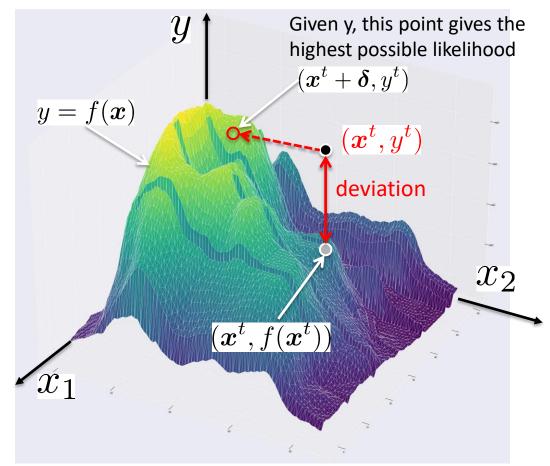
- What if point B is used?
 - How do we characterize Point B?



High-level idea: Defining responsibility score through local perturbation as "horizontal deviation"



 δ : responsibility score ("likelihood compensation")



Likelihood Compensation (LC): Seeking a perturbation that achieves highest possible likelihood in the vicinity

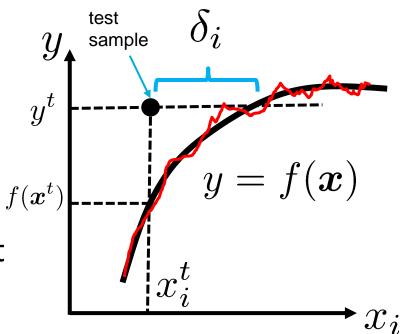
- We use the horizontal deviation as the attribution score
 - \circ i.e., A measure of responsibility of each variable.
- Likelihood compensation δ:

$$\delta^* = \operatorname{argmax}_{\delta} \{ \ln p(y^t \mid x^t + \delta) \}$$

 \checkmark s.t. $x^t + \delta \in \text{vicinity of } x^t$

- $\boldsymbol{\delta}$ is a perturbation such that $\boldsymbol{x}^t + \boldsymbol{\delta}$ achieves the best possible fit to the model
 - $\circ~\pmb{\delta}$ compensates for the loss in likelihood incurred by an anomalous prediction.

LC can be thought of as the 'deviation measured horizontally'



Gaussian-based representation of the LC problem

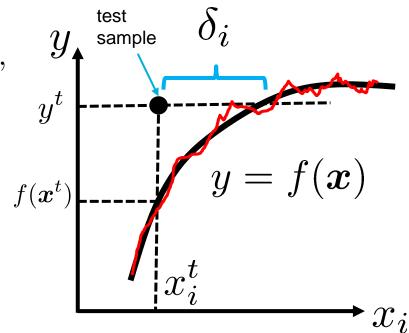
When p(y | x) is Gaussian, LC's optimization problem can be written as

$$\min_{\boldsymbol{\delta}} \left\{ \frac{1}{N_{\text{test}}} \sum_{t=1}^{N_{\text{test}}} \frac{\left[y^t - f(\boldsymbol{x}^t + \boldsymbol{\delta})\right]^2}{2\sigma_t^2} + \frac{1}{2}\lambda \|\boldsymbol{\delta}\|_2^2 + \nu \|\boldsymbol{\delta}\|_1 \right\},\$$

 σ_t^2 : local variance at x^t λ, ν : regularization parameters (hyper parameters)

Looks simple but challenging to solve when f(x) is a black-box function with potential non-smoothness.

LC can be thought of as the 'deviation measured horizontally'



Generalization and interesting contrast to adversarial training

- LC's optimization problem can be generalizaed as

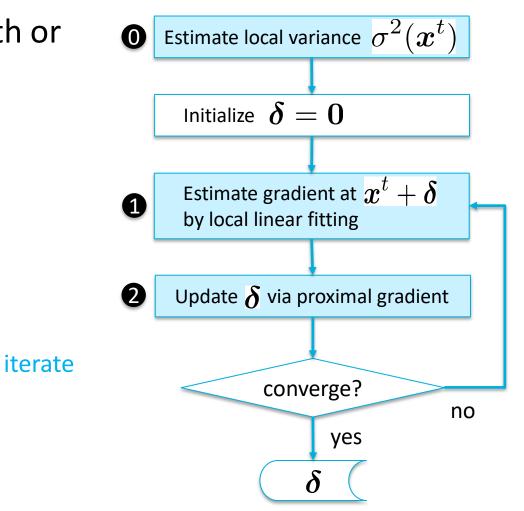
 min(Loss(y^t, x^t + δ)) s.t. x^t + δ ∈ vicinity of x^t
 (···) is empirical average over test samples and Loss is -ln p(y^t | x^t)
 This is to compute the attribution scores for a collection of test samples
- Adversarial training
 - $\circ \min_{\theta} \max_{\delta} \langle \text{Loss}(y^t, x^t + \delta \mid \theta) \rangle \text{ s.t. } x^t + \delta \in \text{vicinity of } x^t$

✓ θ is the model parameter (unavailable in the doubly black-box setting)
 ○ In Adversarial training, x^t is normal. x^t + δ is abnormal (adversarial)
 ○ In LC, x^t is abnormal. x^t + δ is normal

Solving optimization problem by iterating local smooth approximation and proximal gradient

- f(x) is black-box. It may not be even smooth or continuous
- O. Local variance estimation (only once)
 C. Leverage available test data or prior knowledge

- 1. Local gradient estimation of f
 o Amounts to smooth approximation of f
- 2. Proximal gradient update for $\boldsymbol{\delta}$



0. Local variance estimation

 If test samples available are too few, use a constant variance to define a Gaussian observation model

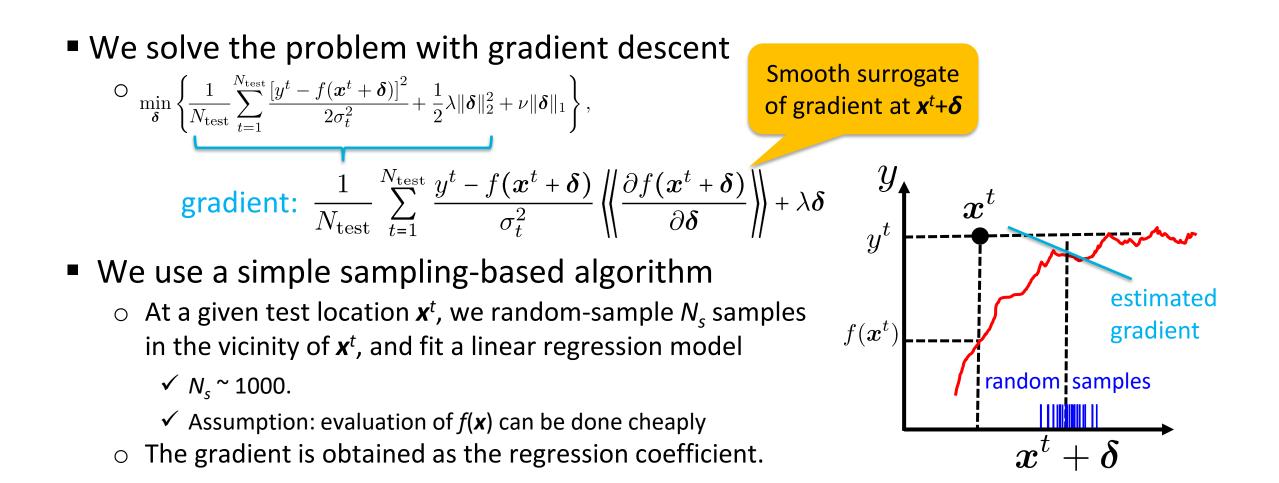
 $\circ \ p(y \mid \boldsymbol{x}) = \mathcal{N}(y \mid f(\boldsymbol{x}), \sigma^2)$

If some amount of test samples are available, use locally weighted maximum likelihood to estimate an input-dependent variance

$$\sigma^{2}(\boldsymbol{x}^{t}) = \max_{\sigma^{2}} \sum_{n=1}^{N_{\text{heldout}}} w_{n}(\boldsymbol{x}^{t}) \left\{ \ln \frac{1}{\sqrt{2\pi\sigma^{2}}} - \frac{(y^{(n)} - f(\boldsymbol{x}^{(n)}))^{2}}{2\sigma^{2}} \right\},$$

$$\textbf{Gaussian kernel} \\ \text{defined for the} \\ \text{specific test sample } \boldsymbol{x}^{t} \\ \textbf{(unavailable)} \quad \textbf{(unavailable)} \quad \textbf{(available)}$$

1. Local gradient estimation of *f*



2. Proximal gradient update for $\boldsymbol{\delta}$

The objective now looks like L₁-regularized convex-ish optimization

$$\sum_{\boldsymbol{\delta}} \left\{ \frac{1}{N_{\text{test}}} \sum_{t=1}^{N_{\text{test}}} \frac{\left[y^t - f(\boldsymbol{x}^t + \boldsymbol{\delta})\right]^2}{2\sigma_t^2} + \frac{1}{2}\lambda \|\boldsymbol{\delta}\|_2^2 + \nu \|\boldsymbol{\delta}\|_1 \right\},$$

$$\text{convex-ish function with the smoothed gradient}} J(\boldsymbol{\delta}) \triangleq \frac{1}{N_{\text{test}}} \sum_{t=1}^{N_{\text{test}}} \frac{\left[y^t - f(\boldsymbol{x}^t + \boldsymbol{\delta})\right]^2}{2\sigma_t^2} + \frac{1}{2}\lambda \|\boldsymbol{\delta}\|_2^2$$

Building an updating rule from δ^{old} using prox gradient-like algorithm

$$\circ \boldsymbol{\delta} = \arg\min_{\boldsymbol{\delta}} \left\{ J(\boldsymbol{\delta}^{\text{old}}) + (\boldsymbol{\delta} - \boldsymbol{\delta}^{\text{old}}) \langle \langle \nabla J(\boldsymbol{\delta}^{\text{old}}) \rangle \rangle + \frac{1}{2\kappa} \|\boldsymbol{\delta} - \boldsymbol{\delta}^{\text{old}}\|_{2}^{2} + \nu \|\boldsymbol{\delta}\|_{1} \right\}$$

smooth quadratic approximation of J

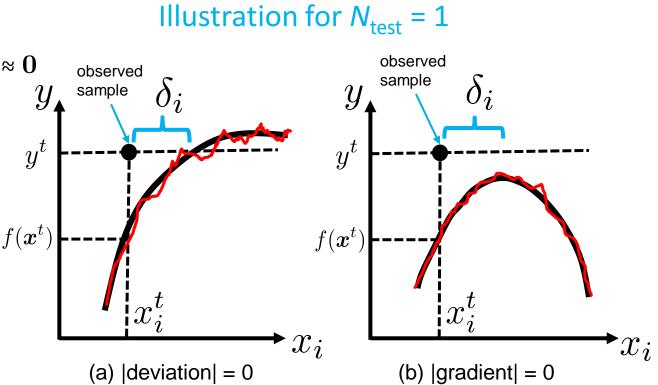
 $= \operatorname{prox}_{\kappa\nu\|\boldsymbol{\delta}\|_{1}} \left(\boldsymbol{\delta}^{\operatorname{old}} - \kappa \langle\!\langle \nabla J(\boldsymbol{\delta}^{\operatorname{old}}) \rangle\!\rangle \right) \text{ The } \mathsf{L}_{1} \operatorname{prox} \operatorname{operator} \operatorname{has} \operatorname{an} \operatorname{analytic} \operatorname{solution!} (\rightarrow \operatorname{paper})$

Condition of convergence – where the intuition of "horizontal deviation" comes from

 The prox gradient-like update converges when

$$\circ \frac{1}{N_{\text{test}}} \sum_{t=1}^{N_{\text{test}}} \frac{y^t - f(\boldsymbol{x}^t + \boldsymbol{\delta})}{\sigma_t^2} \left\| \frac{\partial f(\boldsymbol{x}^t + \boldsymbol{\delta})}{\partial \boldsymbol{\delta}} \right\| \approx 0$$

- Condition (a): |deviation|= 0
 - Met when $y^t = f(\mathbf{x}^t + \boldsymbol{\delta})$
 - "Keep the height, move horizontally until you hit f"
- Condition (b): |gradient|= 0
 - In case there is no horizontal intersection, this warrants convergence



Contents

- Problem setting
- Review of existing attribution approach
- Introducing Likelihood Compensation
- Experimental results

Summary

The main part of this talk has been published as: T. Idé, A. Dhurandhar, J. Navratil, M. Singh, N. Abe, "Anomaly Attribution with Likelihood Compensation," Proc. AAAI 21, pp.4131-4138.

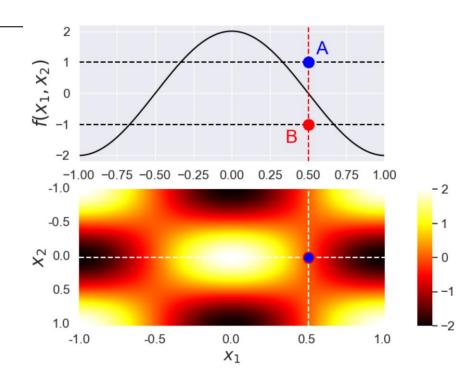
Baseline methods

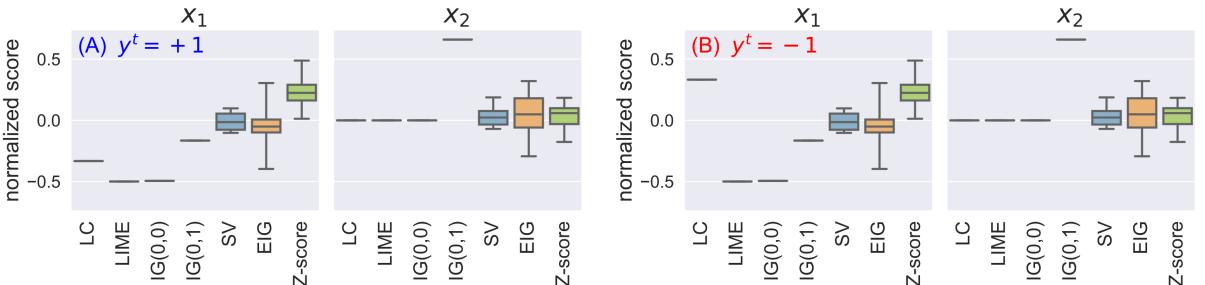
Existing methods either need training data or is deviation-agnostic.

	training-data-free	baseline-free	y-sensitive	reference point
LIME	yes	yes	no	infinitesimal vicinity
SV	no	yes	no	globally distributional
IG	yes	no	no	arbitrary
EIG	no	yes	no	globally distributional
Z-score	no	yes	no	global mean of predictors
\mathbf{LC}	yes	yes	yes	maximum likelihood point

Two-dimensional synthetic data: Existing methods are "deviation-agnostic"

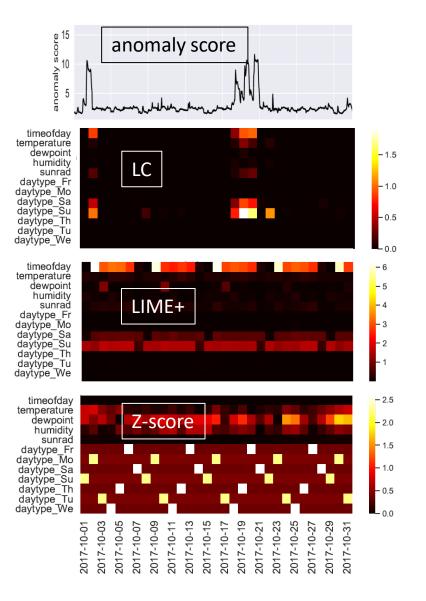
- x1 should be responsible for the outliers A, B
 - LC, LIME IG successfully identified x1
 - But only LC can distinguish points A and B.
- SV, expected IG (EIG), Z-score suffer significant variability issue due to the need for the true distribution P(x).





Comparison with LIME+ and Z-score in building energy use-case

- One month-worth building energy data
 - *y*: energy consumption
 - **x**: time of day, temperature, humidity, sunrad, day of week (one-hot encoded)
- The score is computed based on hourly 24 test points for each day
 - The mean of the absolute values are visualized
 - SV+ was not computable due to lack of training data
- LIME+ is insensitive to outliers
 - LIME score remain the same for any outliers, making it less useful in anomaly attribution
- Z-score does not depend on y (by definition)
 - The artifact for the day-of-week variables is due to one-hot encoding



Contents

- Problem setting
- Review of existing attribution approach
- Introducing Likelihood Compensation
- Experimental results
- Summary

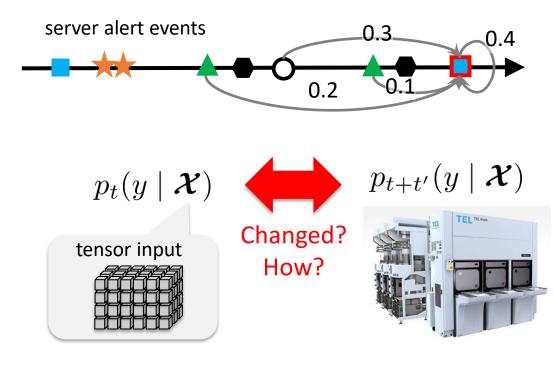
Summarizing practical features of LC

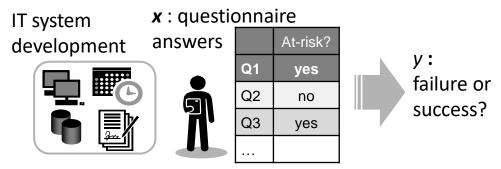
- LC is deviation-sensitive
- LC is model-agnostic
- LC is directly interpretable
 - $\,\circ\,$ LC represents "what you could have done for the best fit" for each input
 - $\circ~$ Naturally provides counterfactual explanations
 - ✓ LC > 0 for a temperature variable, for example, reads "To be consistent to the observed y^t, the temperature could have been higher."
 - ✓ Or simply, "Your temperature was too low for y^{t} "

My other recent works on XAI for business actionability

(Full publication list → <u>https://ide-research.net</u>)

- Causal diagnosis from event data
 - For AlOps application (event grouping)
 - Idé et al., "Cardinality-Regularized Hawkes-Granger Model," NeurIPS 21 [slides, paper].
- Actionable change detection for tensor inputs
 - $\circ~$ For semiconductor tool monitoring
 - Idé, "Tensorial Change Analysis using Probabilistic Tensor Regression," AAAI 19 [poster, paper].
- Project failure risk prediction through psychometric analysis of questionnaire data
 - $\circ~$ For risk management of IBM projects
 - Idé & Dhurandhar, "Informative Prediction based on Ordinal Questionnaire Data," ICDM 15 [<u>slides</u>, <u>paper</u>].





Thank you!