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Motivating use-case: Building energy management. 
Deviations from the model need be explained.

▪ Building admin wants to keep healthy condition 
of building’s air-conditioning system

▪ He got prediction model built on data under 
normal working conditions.
o y: building energy consumption 

o x: Temperature, humidity, day of week, month, room 
occupancy, etc.

▪ Then, any large deviations imply a suboptimal 
situation.

── actual
── prediction
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black-box model

anomalous sample

attribution score 
for (𝒙𝒕, 𝒚𝒕)

training data 
(unavailable)

test data 
(available)

𝑥1

𝑥6

𝑥3

(𝒙𝑡, 𝑦𝑡)

“Doubly black-box” is the most common industrial setting.

▪ Our task: Anomaly attribution
o Compute responsibility score of each 

input variable

▪ Constraint: “doubly black-box”
o Able to access model’s API

o Not able to access training data

o Not able to access internal model 
parameters

▪ Note: typical end-users are not ML 
researchers!
o Even you have access to the source code, 

the model can be a black-box
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Technical task: Compute responsibility score of each input variable, 
given test sample(s).

Black-box regression function

anomaly attribution
algorithm

(xt, yt) 

Test sample(s) 
showing 
anomaly/deviation

Input Output
responsibility score 
computed locally at (xt, yt):

δ1, …, δM

(from Boston 
Housing example)

t-th test sample
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Major attribution approaches: 
LIME, Shapley value (SV), and Integrated Gradient (IG)

▪ Local linear surrogate modeling (LIME)
o Attribution score = i-th variable’s gradient estimated 

locally at 𝒙𝑡

▪ Integrated gradient (IG)
o Attribution score = i-th variable’s contribution to the 

increment from the baseline input

▪ Shapley value (SV) 
o

conditional expectation, given 
𝑆𝑖, a subset of the variables 

• Not intuitive.

• Tend to be used 
as a black-box!
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Major attribution approaches: 
LIME, Shapley value (SV), and Integrated Gradient (IG)

▪ Local linear surrogate modeling (LIME)
o Attribution score = i-th variable’s gradient estimated 

locally at 𝒙𝑡

▪ Integrated gradient (IG)
o Attribution score = i-th variable’s contribution to the 

increment from the baseline input 𝒙0

✓ σ𝑖 IG𝑖 𝒙𝑡 = 𝑓 𝒙𝑡 − 𝑓 𝒙0

▪ Shapley value (SV)
o Attribution score = i-th variable’s contribution to 

expected increment

✓ σ𝑖 SV𝑖 𝒙𝑡 = 𝑓 𝒙𝑡 − ⟨𝑓⟩

𝑥𝑖
𝑥𝑖
𝑡

𝑥𝑖
0

(𝒙𝑡, 𝑦𝑡)

increment

local 
gradient

deviation

𝑦

baseline input
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Hidden secret: Existing “anomaly attribution” methods do not explain 
deviations! 

▪ Local linear surrogate modeling (LIME)
o Attribution score = i-th variable’s gradient estimated 

locally at 𝒙𝑡

▪ Integrated gradient (IG)
o Attribution score = i-th variable’s contribution to the 

increment from the baseline input 𝒙0

✓ σ𝑖 IG𝑖 𝒙𝑡 = 𝑓 𝒙𝑡 − 𝑓 𝒙0

▪ Shapley value (SV)
o Attribution score = i-th variable’s contribution to 

expected increment

✓ σ𝑖 SV𝑖 𝒙𝑡 = 𝑓 𝒙𝑡 − ⟨𝑓⟩

Provides local gradient

Explain increment
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Hidden secret: Existing “anomaly attribution” methods do not explain 
deviations! Example of LIME

deviation

local linear model

Local surrogate model to explain f(x) Anomaly attribution needs to explain f(x) - y
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Hidden secret: Existing “anomaly attribution” methods do not explain 
deviations! LIME, IG, SV are deviation-agnostic.

▪ Local linear surrogate modeling (LIME)
o Attribution score = i-th variable’s gradient estimated 

locally at 𝒙𝑡

▪ Integrated gradient (IG)
o Attribution score = i-th variable’s contribution to the 

increment from the baseline input 𝒙0

✓ σ𝑖 IG𝑖 𝒙𝑡 = 𝑓 𝒙𝑡 − 𝑓 𝒙0

▪ Shapley value (SV)
o Attribution score = i-th variable’s contribution to 

expected increment

✓ σ𝑖 SV𝑖 𝒙𝑡 = 𝑓 𝒙𝑡 − ⟨𝑓⟩

deviation-
agnostic
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High-level idea: Focus on another deviation

▪ An anomaly implies a deviation from a certain 
reference point. 

▪ Point A is typically used to determine the 
anomalousness.
o But is not useful for attribution purposes. 

▪What if point B is used? 
o How do we characterize Point B?

𝑥𝑖
𝑥𝑖
𝑡

(𝒙𝑡, 𝑦𝑡)

𝑦

A

Bdeviation

another 
deviation
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High-level idea: Defining responsibility score through local 
perturbation as “horizontal deviation”

deviation

local linear model

Given y, this point gives the 
highest possible likelihood

: responsibility score 
(“likelihood compensation”)Local surrogate model to explain f(x) 
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Likelihood Compensation (LC): Seeking a perturbation that achieves 
highest possible likelihood in the vicinity

▪We use the horizontal deviation as the attribution 
score
o i.e., A measure of responsibility of each variable.

▪ Likelihood compensation δ:  

o 𝛿∗ = argmax
𝜹

{ln 𝑝 𝑦𝑡 𝒙𝑡 + 𝜹 }

✓s. t. 𝒙𝑡 + 𝜹 ∈ vicinity of 𝒙𝑡

▪ δ is a perturbation such that xt + δ achieves the best 
possible fit to the model
o δ compensates for the loss in likelihood incurred by an 

anomalous prediction. 

test 

sample

LC can be thought of as the 
‘deviation measured horizontally’ 
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Gaussian-based representation of the LC problem

▪When 𝑝 𝑦 𝑥 is Gaussian, LC’s optimization 
problem can be written as

o 𝜎𝑡
2 : local variance at 𝒙𝑡

o 𝜆, 𝜈: regularization parameters (hyper parameters) 

▪ Looks simple but challenging to solve when 𝑓(𝒙)
is a black-box function with potential non-
smoothness.

test 

sample

LC can be thought of as the 
‘deviation measured horizontally’ 
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Generalization and interesting contrast to adversarial training

▪ LC’s optimization problem can be generalizaed as 

o min
𝜹

⟨Loss(𝑦𝑡, 𝒙𝑡 + 𝜹) ⟩ s. t. 𝒙𝑡 + 𝜹 ∈ vicinity of 𝒙𝑡

o ⋯ is empirical average over test samples and Loss is −ln 𝑝 𝑦𝑡 𝒙𝑡

o This is to compute the attribution scores for a collection of test samples

▪ Adversarial training

o min
𝜃

max
𝜹

⟨Loss(𝑦𝑡, 𝒙𝑡 + 𝜹 ∣ 𝜃) ⟩ s. t. 𝒙𝑡 + 𝜹 ∈ vicinity of 𝒙𝑡

✓ 𝜃 is the model parameter (unavailable in the doubly black-box setting)

o In Adversarial training, 𝒙𝑡 is normal. 𝒙𝑡 + 𝜹 is abnormal (adversarial) 

o In LC, 𝒙𝑡 is abnormal. 𝒙𝑡 + 𝜹 is normal
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Solving optimization problem by iterating local smooth 
approximation and proximal gradient

▪ f(x) is black-box. It may not be even smooth or 
continuous

▪ 0. Local variance estimation (only once)
o Leverage available test data or prior knowledge

▪ 1. Local gradient estimation of f
o Amounts to smooth approximation of f

▪ 2. Proximal gradient update for δ

Estimate local variance

Estimate gradient at       
by local linear fitting 

Update      via proximal gradient    

converge?

Initialize 

yes
no

0

1

2

iterate
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0. Local variance estimation

▪ If test samples available are too few, use a constant variance to define a 
Gaussian observation model
o

▪ If some amount of test samples are available, use locally weighted maximum 
likelihood to estimate an input-dependent variance
o

training data 
(unavailable)

test data (available)

Gaussian kernel 
defined for the 
specific test sample xt
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1. Local gradient estimation of f

▪We solve the problem with gradient descent
o

▪ We use a simple sampling-based algorithm
o At a given test location xt, we random-sample Ns samples 

in the vicinity of xt, and fit a linear regression model 

✓ Ns ~ 1000. 

✓ Assumption: evaluation of f(x) can be done cheaply

o The gradient is obtained as the regression coefficient.

gradient:

Smooth surrogate 
of gradient at xt+δ

estimated 
gradient

random  samples
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2. Proximal gradient update for δ

▪ The objective now looks like L1-regularized convex-ish optimization 
o

▪ Building an updating rule from δold using prox gradient-like algorithm
o

convex-ish function with 
the smoothed gradient

smooth quadratic approximation  of J

The L1 prox operator has an analytic solution! (→ paper)
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Condition of convergence – where the intuition of “horizontal 
deviation” comes from

▪ The prox gradient-like update 
converges when
o

▪ Condition (a): |deviation|= 0
o Met when yt = f(xt + δ)
o “Keep the height, move horizontally 

until you hit f ”

▪ Condition (b): |gradient|= 0 
o In case there is no horizontal 

intersection, this warrants convergence 

observed 

sample

observed 

sample

(a) |deviation| = 0 (b) |gradient| = 0

Illustration for Ntest = 1
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Baseline methods

▪ Existing methods either need training data or is deviation-agnostic.
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Two-dimensional synthetic data: 
Existing methods are “deviation-agnostic”

▪ x1 should be responsible for the outliers A, B
o LC, LIME IG successfully identified x1
o But only LC can distinguish points A and B. 

▪ SV, expected IG (EIG), Z-score suffer significant 
variability issue due to the need for the true 
distribution P(x). 
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Comparison with LIME+ and Z-score in building energy use-case

anomaly score

LC

LIME+

Z-score

▪ One month-worth building energy data
o y: energy consumption
o x: time of day, temperature, humidity, sunrad, day of week (one-

hot encoded)

▪ The score is computed based on hourly 24 test points 
for each day
o The mean of the absolute values are visualized
o SV+ was not computable due to lack of training data

▪ LIME+ is insensitive to outliers
o LIME score remain the same for any outliers, making it less useful 

in anomaly attribution

▪ Z-score does not depend on y (by definition)
o The artifact for the day-of-week variables is due to one-hot 

encoding
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Summarizing practical features of LC

▪ LC is deviation-sensitive

▪ LC is model-agnostic

▪ LC is directly interpretable 
o LC represents “what you could have done for the best fit” for each input 

o Naturally provides counterfactual explanations

✓ LC > 0 for a temperature variable, for example, reads “To be consistent to the observed yt, the 
temperature could have been higher.” 

✓ Or simply, “Your temperature was too low for yt ”
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My other recent works on XAI for business actionability
(Full publication list → https://ide-research.net )

▪ Causal diagnosis from event data
o For AIOps application (event grouping)
o Idé et al., “Cardinality-Regularized Hawkes-Granger 

Model,” NeurIPS 21 [slides, paper].

▪ Actionable change detection for tensor inputs
o For semiconductor tool monitoring
o Idé, “Tensorial Change Analysis using Probabilistic 

Tensor Regression,” AAAI 19 [poster, paper].

▪ Project failure risk prediction through 
psychometric analysis of questionnaire data
o For risk management of IBM projects
o Idé & Dhurandhar, “Informative Prediction based on 

Ordinal Questionnaire Data,” ICDM 15 [slides, paper].

0.2

0.3 0.4

0.1

Changed? 
How?

server alert events

tensor input

At-risk?

Q1 yes

Q2 no

Q3 yes

…

x : questionnaire
answers

IT system 
development

y :
failure or 
success?

https://ide-research.net/
https://ide-research.net/papers/2021_NeurIPS_Ide_presentation.pdf
https://ide-research.net/papers/2021_NeurIPS_Ide.pdf
https://ide-research.net/papers/2019%20AAAI_Ide_poster.pdf
https://ide-research.net/papers/2019_AAAI_Ide.pdf
https://ide-research.net/papers/2015_ICDM_Ide.pptx.pdf
https://ide-research.net/papers/2015_ICDM_Ide.pdf
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Thank you!
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