**IBM Semiconductors** 

# Decentralized Collaborative Machine Learning Framework with Democracy, Diversity, and Privacy

Tsuyoshi Idé ("Ide-san" 井手 剛) Head of Data Science, IBM Semiconductors

Presented at the 2023 International workshop Blockchain Kaigi (Kobe, Japan, Oct. 2023).



- Introduction: Blockchain as value co-creation platform
- Decentralized collaborative learning framework
- Secure decentralized aggregation
- Network topology design
- Summary

### 1<sup>st</sup> gen Blockchain: Designed specifically for currency transfer



#### Blockchain 1.0: Bitcoin

- $\,\circ\,$  Designed specifically for currency transfer
- $\,\circ\,$  Verifying a transaction is trivial: just by checking account balances
- A unique consensus algorithm is used ("proof-of-work")

#### Limitations

- $\circ~$  Unable to handle general business transactions
- Proof-of-work lacks a deterministic guarantee



# 2<sup>nd</sup> gen Blockchain: General-purpose business transaction management platform



Blockchain 2.0: Smart-Contract-enabled transaction management platform

- $\,\circ\,$  Designed to be able to handle "general" business transactions
- $\circ$  Traditional consensus algorithm (e.g. PBFT) is typically used

### Limitations

- Validating smart contracts is not straightforward (c.f. money transfer)
- No "knowledge discovery" elements: only perform predefined routines



# ethereum

### **3<sup>rd</sup> gen Blockchain: Towards Al-integrated value co-creation platform**



Blockchain 3.0: Value co-creation platform

- "Value co-creation": Share data, and collaboratively develop new insights that cannot be accessed when looking at your own data alone
- AI/machine learning provides a systematic means for value co-creation

# Three requirements of value co-creation platform: Democracy, diversity, privacy

#### Democracy

- All participants are equal
- $\,\circ\,$  No dictator/central server that controls everything

### Diversity

- $\,\circ\,$  All participants are not the same
- $\,\circ\,$  They wish to have insights customized to each

#### Privacy

- $\,\circ\,$  All participants can keep own data secret
- $\,\circ\,$  Collaborative learning is not communism



- Introduction: Blockchain as value co-creation platform
- Decentralized collaborative learning framework
- Secure decentralized aggregation
- Network topology design
- Summary

# These three requirements are naturally translated into specific machine learning problems

- Democracy  $\rightarrow$  decentralized
  - $\,\circ\,$  All participants are equal
  - No dictator/central server that controls everything
- Diversity  $\rightarrow$  multi-task
  - $\,\circ\,$  All participants are not the same
  - $\,\circ\,$  They wish to have insights customized to each

#### Privacy

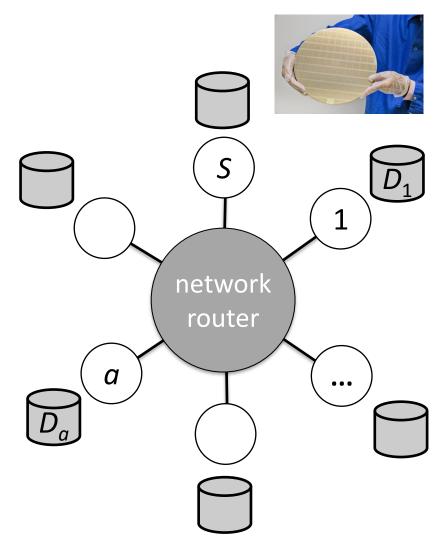
- $\,\circ\,$  All participants can keep own data secret
- $\,\circ\,$  Collaborative learning is not communism

Blockchain 3.0 as multi-task learning with decentralization and privacy constraints

# Use-case example: Collaborative training of anomaly detection models of semiconductor manufacturing tools

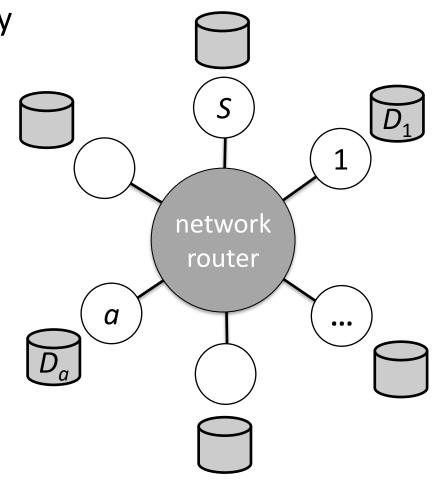
#### Why collaborative?

- Anomalies are rare. Collecting as many anomaly examples as possible is critical for a high accuracy.
- Why multi-task?
  - A one-size-fit-all model is typically not useful as the operating conditions are different.
- Why privacy/decentralized?
  - Information on failures is highly confidential. They don't want to disclose raw anomaly data.
  - $\circ~$  They don't want send sensitive data to the server, either.

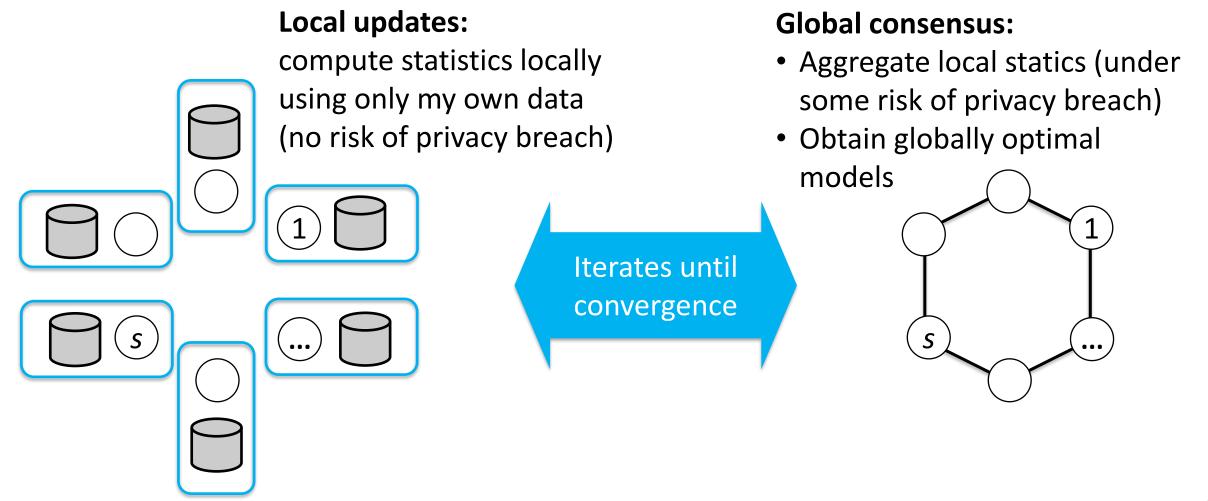


# (For ref.) We focus on multi-task density estimation as a concrete machine learning problem

- Each participant (*a*=1,.., *S*) has a dataset  $D^a$  privately  $\mathcal{D}^a = \{ x^{a(1)}, x^{a(2)}, \dots, x^{a(N_a)} \}$
- The model in this case is the probability density function (pdf) of observed data *x x*: real-valued multi-dimensional vector
- No central server. Only P2P communication is allowed according to a given network topology
- All the participants share the motivation of refining their model by leveraging other participants' knowledge



# Model training can be done by iterating global and local updates in maximum likelihood



# **Question: How do we achieve decentralized and privacy-preserving training?**

- The original maximum likelihood algorithm does not consider either decentralized or privacy-preserving aspects.
- Two research questions to be answered

How do we securely aggregate local statistics?

Can we optimize communication network for faster aggregation?



- Introduction: Blockchain as value co-creation platform
- Decentralized collaborative learning framework

Secure decentralized aggregation

- Network topology design
- Summary

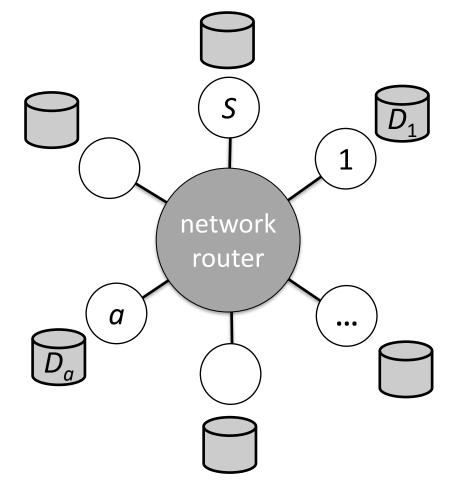
### Secure aggregation problem

Problem: Compute summation

$$\bar{c} = c_1 + c_2 + \ldots + c_S$$

 $\circ$   $c_a$  (a=1, ..., S): A statistic (or a datum) computed locally by participant a

- Easy? Not really, when only P2P communications are allowed
  - $\,\circ\,\,$  Broadcasting your data to all?
    - ✓ No! Total privacy breach
  - $\circ~$  Select a leader to let her compute?
    - ✓ No! What if she is a bad guy?

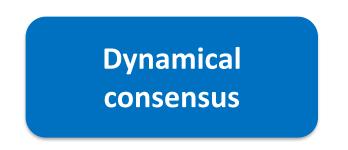


# Existing privacy-preservation approaches have issues in decentralized setting

- Encryption-based
  - $\,\circ\,$  Decentralization is nontrivial
  - Can be serious computational bottleneck
    - ✓ Great for one-time business transactions
    - Not designed for iterative machine learning algorithms

- "Noise-based" (differential privacy)
  - $\,\circ\,$  Typically needs central authority
  - Noise variance blows up in the multi-party setting as a result of aggregation
  - Learning models can be suboptimal due to noise

### **Our solution to secure aggregation problem**



- Repeat P2P communication so a certain Markov transition is performed
- Stationary state of the Markov chain converges to the aggregated value (magical!)

 Random chunking with probabilistic privacy guarantee

**Secret sharing** 

 Securer (but slow) alternative:

 Shamir's secret sharing combined with dynamical consensus

### **Dynamical consensus algorithm:**

Ο

### Leveraging Markovian dynamics for aggregation

Algorithm: Each participant repeat an update until convergence

 $c_a \leftarrow c_a + \epsilon \sum_{j=1} \mathsf{A}_{a,j}(c_j - c_a)$  Communicate only with connected peers

- A: Network topology (= adjacency matrix of the graph)
   ε: A small positive constant
- Upon convergence, each participant ends up having

$$\quad \bar{c} = \sum_{a=1}^{S} c_a = \mathbf{1}^{\top} \mathbf{c}$$

- Cycle graph as an example of topology a
- Why? Because the update is the same as multiplying a matrix, whose leading eigenvector is the 1 vector. (→ see the paper)

## Random chunking algorithm: Applying aggregation to each random split

Each participant randomly splits their datum into N<sub>c</sub> chunks

$$\bar{c} = \sum_{a=1}^{S} c_a \qquad c_a = c_a^{[1]} + c_a^{[2]} + c_a^{[3]}$$

Do dynamic consensus N<sub>c</sub> times and sum

$${}^{\circ} \ \ \bar{c} = \bar{c}^{[1]} + \bar{c}^{[2]} + \bar{c}^{[3]}$$

Ο

- Need to shuffle node IDs every time upon starting aggregation
  - This is for a node not to receive all the chunks
  - $\,\circ\,$  Security guarantee becomes thus probabilistic

# Random chunking algorithm trades off cryptographic security guarantee for computational efficiency

- Shamir's secret sharing (SSS) allows performing aggregation without revealing any raw data
- In random chunking, privacy guarantee is probabilistic. But it is a few orders of magnitude faster than SSS

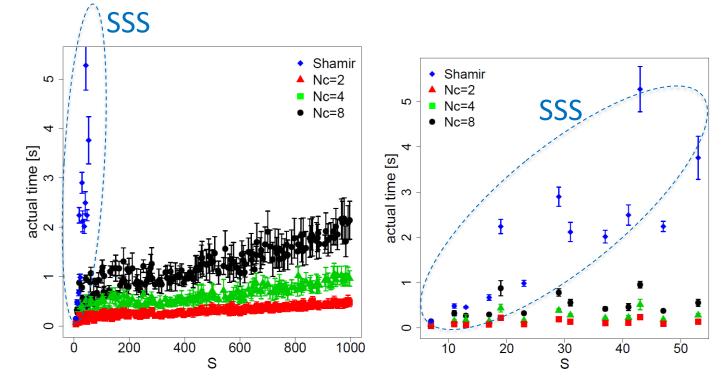


Fig. 6. Actual computation time for aggregation on the 3-regular expander graph. The right panel covers the range of  $7 \le S \le 53$ .

# Random chunking algorithm has probabilistic security guarantee (proof → [Ide & Raymond, SMDS 21])

| scenario      | breach probability bound per node                                                      | parameters                                                                                              |
|---------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| independent   | $\leq (S-1) \left(\frac{d_a}{S-1}\right)^{N_{\rm C}}$                                  | <i>d<sub>a</sub></i> : Node degree of the <i>a</i> -th node <i>N<sub>c</sub></i> : The number of splits |
| collusion     | $\leq \exp\left\{-N_{\rm C}\left(1-\frac{d_a}{S-N_{\rm L}}\right)^{N_{\rm L}}\right\}$ | <i>N<sub>L</sub></i> : The number of colluded nodes                                                     |
| eavesdropping | $\leq \exp\left\{-N_{\rm C}\left(1-\frac{N_{\rm E}}{E-d_a+1}\right)^{d_a}\right\}$     | N <sub>E</sub> : The number of tapped edges<br>E: The total number of edges of<br>the graph             |

Tsuyoshi Idé, Rudy Raymond, "Decentralized Collaborative Learning with Probabilistic Data Protection," In Proceedings of the 2021 IEEE International Conference on Smart Data Services (SMDS 21, September 5-10, 2021), pp.234-243.



- Introduction: Blockchain as value co-creation platform
- Decentralized collaborative learning framework
- Secure decentralized aggregation
- Network topology design
- Summary

# Spectral stricture of $W_{\epsilon}$ governs convergence speed in dynamical consensus

- The dynamical consensus algorithm can be viewed as repeated multiplication of a matrix  $\mathbf{W}_{\epsilon} \equiv \mathbf{I} - \epsilon(\mathbf{D} - \mathbf{A})$ or A: adjacency matrix; D: degree matrix
  - $\circ$  **D A** is known as the graph Laplacian

dynamical consensus update
$$c_a \leftarrow c_a + \epsilon \sum_{j=1}^{S} \mathsf{A}_{a,j}(c_j - c_a)$$

- The spectral structure of  $\mathbf{W}_{\varepsilon}$  governs convergence speed
  - $\odot\,$  Critical quantity is the "spectral gap":  $\lambda_1 \lambda_2$ 
    - ✓ The difference between the 1<sup>st</sup> and the 2<sup>nd</sup> largest eigenvalues of  $W_{\varepsilon}$
- Question: How do I choose the topology, so the spectral gap is as large as possible while keeping the probability of privacy breach low?

# Deep mathematical result in graph theory helps find a good compromise between privacy and convergence speed

### The topology should be

- $\,\circ\,$  as sparse as possible for privacy protection
- $\,\circ\,$  as dense as possible for faster convergence
- A class of graphs called the *expander graph* is an ideal compromise
  - $\,\circ\,$  Known as a sparse approximation of the complete graph
- Remarkable property of the expander graph
  - $\circ~$  By Cheeger's inequality, we have

$$\Delta_{\lambda} \triangleq \lambda_1 - \lambda_2 \ge \epsilon \frac{\alpha^2}{2d} \quad (d\text{-regular expander graphs})$$

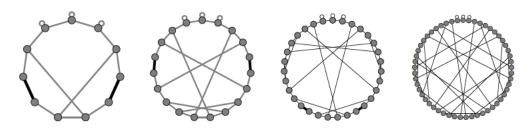
- α: lower bound of a quantity called the expansion coefficient
- $\delta$ : relative error allowed

from which we can evaluate the number of iterations as

$$t \sim O\left(\frac{\ln(\sqrt{S}/\delta)}{|\ln(1-\Delta_{\lambda})|}\right)$$
 logarithmic convergence w.r.t. # participants

# Expander graph drastically improves convergence speed for aggregation.

- "Cycle with inverse chord" is a known instance of expander graph.
  - $\circ$  Cycle graph + some edges



- Speedup is drastic: expander vs. cycle
  - $\circ$  S is the number of network participants.
  - $\circ$  Expander: comp. time  $\sim \log S$
  - Cycle: ~  $S^2$

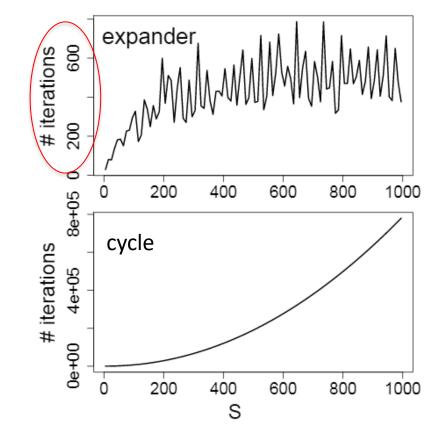


Fig. 5. Comparison of the number of iterations t for  $\delta = 10^{-3}$ .



- Introduction: Blockchain as value co-creation platform
- Decentralized collaborative learning framework
- Secure decentralized aggregation
- Network topology design
- Summary



- Decentralized collaborative learning is a generalization of the original concept of blockchain.
- It can be formalized as multi-task learning under decentralization and privacy constraint.
- Random chucking can be a practical alternative to slow cryptographic algorithms
- Expander graph as network topology achieves drastic speed up in secure aggregation.

### **Future research topics**

- Learning under network failures
  - The current model assumes perfect synchronization. Evaluating robustness under network failure and extending the algorithm to handle asynchronous communication is important.
- Meta-agreement issues
  - In addition to computed numerical statistics, there are several things that require participants' consensus
    - Choice of the algorithm, dimensionality, topology, etc.
- External data privacy
  - We focused on privacy guarantees among network participants. Evaluation of privacy leakage when, e.g., externally selling the learned model is an open question.

- Randomness in graph spectra
  - The expander graph provides an excellent convergence rate in dynamical consensus, but it introduces some unpredictability in the graph spectra.
- Security analysis
  - The random chunking algorithm combined with the dynamic consensus algorithm appears to have more flexibility than traditional cryptographic methods. We need to study further the pros and cons of those methods.
- Use-cases
  - Finally, we need to develop practical usecases where the decentralized architecture is truly useful. The lightweight probabilistic privacy guarantee seems suitable in IoT applications, but more study is needed.

### Thank you!