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1st gen Blockchain: Designed specifically for currency transfer

▪ Blockchain 1.0: Bitcoin
o Designed specifically for currency transfer

o Verifying a transaction is trivial: just by checking account balances

o A unique consensus algorithm is used (“proof-of-work”) 

▪ Limitations
o Unable to handle general business transactions

o Proof-of-work lacks a deterministic guarantee

1st gen:
currency transfer

2nd gen:
distributed 

ledger

3rd gen:
value-co-creation 
platform with AI
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2nd gen Blockchain: General-purpose business transaction 
management platform

▪ Blockchain 2.0: Smart-Contract-enabled transaction management platform
o Designed to be able to handle “general” business transactions

o Traditional consensus algorithm (e.g. PBFT) is typically used

▪ Limitations
o Validating smart contracts is not straightforward (c.f. money transfer)

o No “knowledge discovery” elements: only perform predefined routines

1st gen:
currency transfer

2nd gen:
distributed 

ledger

3rd gen:
value-co-creation 
platform with AI
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3rd gen Blockchain: Towards AI-integrated value co-creation platform

▪ Blockchain 3.0: Value co-creation platform

▪ “Value co-creation”: Share data, and collaboratively develop new insights 
that cannot be accessed when looking at your own data alone

▪ AI/machine learning provides a systematic means for value co-creation

1st gen:
currency transfer

2nd gen:
distributed 

ledger

3rd gen:
value co-creation 
platform with AI
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Three requirements of value co-creation platform:
Democracy, diversity, privacy

▪ Democracy
o All participants are equal

o No dictator/central server that controls everything

▪ Diversity
o All participants are not the same

o They wish to have insights customized to each

▪ Privacy
o All participants can keep own data secret

o Collaborative learning is not communism
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These three requirements are naturally translated into specific 
machine learning problems

▪ Democracy → decentralized
o All participants are equal
o No dictator/central server that controls 

everything

▪ Diversity → multi-task
o All participants are not the same
o They wish to have insights customized to each

▪ Privacy
o All participants can keep own data secret
o Collaborative learning is not communism

Blockchain 3.0 
as

multi-task learning 
with decentralization 

and privacy 
constraints



9

Use-case example: Collaborative training of anomaly detection 
models of semiconductor manufacturing tools

▪ Why collaborative? 
o Anomalies are rare. Collecting as many anomaly 

examples as possible is critical for a high accuracy.

▪ Why multi-task?
o A one-size-fit-all model is typically not useful as the 

operating conditions are different.

▪ Why privacy/decentralized?
o Information on failures is highly confidential. They don’t 

want to disclose raw anomaly data.

o They don’t want send sensitive data to the server, either.
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(For ref.) We focus on multi-task density estimation as a concrete 
machine learning problem

▪ Each participant (a=1,.., S) has a dataset Da privately
o  

▪ The model in this case is the probability density 
function (pdf) of observed data x
o x:  real-valued multi-dimensional vector 

▪ No central server. Only P2P communication is 
allowed according to a given network topology

▪ All the participants share the motivation of refining 
their model by leveraging other participants’ 
knowledge
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Model training can be done by iterating global and local updates in 
maximum likelihood

...

1

s...

1

s

Local updates: 
compute statistics locally 
using only my own data 
(no risk of privacy breach)

Global consensus: 
• Aggregate local statics (under 

some risk of privacy breach)
• Obtain globally optimal 

models

Iterates until 
convergence
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Question: How do we achieve decentralized and privacy-preserving 
training?

▪ The original maximum likelihood algorithm does not consider either 
decentralized or privacy-preserving aspects.

▪ Two research questions to be answered

How do we securely 
aggregate local statistics?

Can we optimize 
communication network for 

faster aggregation?
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Secure aggregation problem

▪Problem: Compute summation 
o  

o ca (a=1, .., S): A statistic (or a datum) computed 
locally by participant a

▪Easy? Not really, when only P2P 
communications are allowed
o Broadcasting your data to all? 

✓ No! Total privacy breach
o Select a leader to let her compute? 

✓ No! What if she is a bad guy?
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Existing privacy-preservation approaches have issues in decentralized 
setting

▪ Encryption-based 
o Decentralization is nontrivial

o Can be serious computational 
bottleneck

✓ Great for one-time business 
transactions

✓ Not designed for iterative machine 
learning algorithms

▪ "Noise-based" (differential privacy)
o Typically needs central authority

o Noise variance blows up in the 
multi-party setting as a result of 
aggregation

o Learning models can be suboptimal 
due to noise
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Our solution to secure aggregation problem

▪ Repeat P2P communication so a 
certain Markov transition is 
performed

▪ Stationary state of the Markov 
chain converges to the aggregated 
value (magical!)

▪ Random chunking with probabilistic 
privacy guarantee

▪ Securer (but slow) alternative:
o Shamir’s secret sharing combined 

with dynamical consensus

Dynamical 
consensus

Secret sharing+
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Dynamical consensus algorithm:
Leveraging Markovian dynamics for aggregation

▪ Algorithm: Each participant repeat an update until convergence
o  

o A: Network topology (= adjacency matrix of the graph)
o ε: A small positive constant

▪ Upon convergence, each participant ends up having

o  

▪Why? Because the update is the same as multiplying a matrix, whose leading 
eigenvector is the 1 vector.  (→ see the paper)

S

...

1

a

S-dimensional vector of ones

Communicate only 
with connected peers

Cycle graph as 
an example of 
topology 
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Random chunking algorithm: 
Applying aggregation to each random split

▪ Each participant randomly splits their datum into Nc chunks
o  

▪ Do dynamic consensus Nc times and sum
o  

▪ Need to shuffle node IDs every time upon starting aggregation
o This is for a node not to receive all the chunks
o Security guarantee becomes thus probabilistic



19

Random chunking algorithm trades off cryptographic security 
guarantee for computational efficiency

▪ Shamir’s secret sharing (SSS) 
allows performing 
aggregation without revealing 
any raw data

▪ In random chunking, privacy 
guarantee is probabilistic. But 
it is a few orders of magnitude 
faster than SSS

SSS

SSS
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Random chunking algorithm has probabilistic security guarantee
(proof → [Ide & Raymond, SMDS 21])

scenario breach probability bound per node parameters

independent da: Node degree of the a-th node
NC: The number of splits

collusion NL: The number of colluded nodes

eavesdropping NE: The number of tapped edges
E:  The total number of edges of 
the graph

Tsuyoshi Idé, Rudy Raymond, “Decentralized Collaborative Learning with Probabilistic Data Protection,” In Proceedings 
of the 2021 IEEE International Conference on Smart Data Services (SMDS 21, September 5-10, 2021), pp.234-243.
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Spectral stricture of  𝐖𝝐 governs convergence speed in dynamical 
consensus

▪ The dynamical consensus algorithm can be viewed as repeated multiplication 
of a matrix 
o A: adjacency matrix;  D: degree matrix

o D – A is known as the graph Laplacian

▪ The spectral structure of Wε governs convergence speed
o Critical quantity is the “spectral gap”: λ1 – λ2 

✓ The difference between the 1st and the 2nd largest eigenvalues of  Wε 

▪ Question: How do I choose the topology, so the spectral gap is as large as 
possible while keeping the probability of privacy breach low? 

dynamical consensus update 
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Deep mathematical result in graph theory helps find a good 
compromise between privacy and convergence speed

▪ The topology should be
o as sparse as possible for privacy protection

o as dense as possible for faster convergence

▪ A class of graphs called the expander graph is an ideal compromise
o Known as a sparse approximation of the complete graph

▪ Remarkable property of the expander graph
o By Cheeger’s inequality, we have

from which we can evaluate the number of iterations as

• α: lower bound of a quantity called 
the expansion coefficient

• δ: relative error allowed

logarithmic convergence w.r.t. # participants
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cycle

Expander graph drastically improves convergence speed for 
aggregation.

▪ “Cycle with inverse chord” is a known 
instance of expander graph.
o Cycle graph + some edges 

▪ Speedup is drastic: expander vs. cycle
o S is the number of network participants.

o Expander: comp. time  ∼ log 𝑆

o Cycle: ∼ 𝑆2
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Summary

▪ Decentralized collaborative learning is a generalization of the original 
concept of blockchain.

▪ It can be formalized as multi-task learning under decentralization and privacy 
constraint.

▪ Random chucking can be a practical alternative to slow cryptographic 
algorithms

▪ Expander graph as network topology achieves drastic speed up in secure 
aggregation.
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Future research topics

▪ Learning under network failures
o The current model assumes perfect 

synchronization. Evaluating robustness 
under network failure and extending the 
algorithm to handle asynchronous 
communication is important.

▪ Meta-agreement issues
o In addition to computed numerical 

statistics, there are several things that 
require participants’ consensus
✓ Choice of the algorithm, dimensionality, 

topology, etc.
▪ External data privacy

o We focused on privacy guarantees among 
network participants. Evaluation of privacy 
leakage when, e.g., externally selling the 
learned model is an open question. 

▪ Randomness in graph spectra
o The expander graph provides an excellent 

convergence rate in dynamical consensus, 
but it introduces some unpredictability in 
the graph spectra. 

▪ Security analysis
o The random chunking algorithm combined 

with the dynamic consensus algorithm 
appears to have more flexibility than 
traditional cryptographic methods. We 
need to study further the pros and cons of 
those methods.

▪ Use-cases
o Finally, we need to develop practical use-

cases where the decentralized architecture 
is truly useful. The lightweight probabilistic 
privacy guarantee seems suitable in IoT 
applications, but more study is needed.
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Thank you!
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