
DIRECTION AWARE POSITIONAL AND STRUCTURAL ENCODING FOR DIRECTED
GRAPH NEURAL NETWORKS

Yonas Sium 1 Georgios Kollias 2 Tsuyoshi Idé 2 Payel Das 2 Naoki Abe 2 Aurélie Lozano 2 Qi Li1

1Iowa State University
2 IBM Research, T. J. Watson Research Center

ABSTRACT

We propose a novel method for computing joint 2-node structural
representations for link prediction in directed graphs. Existing ap-
proaches can be grouped into two families. The first group of methods
learn structural embeddings of individual nodes in the entire graph
through a directed Graph Neural Network (GNNs), and then combine
pairs of the encodings to get a representation for the respective node
pairs. Methods in the second group compute a representation of
the subgraph enclosing the two nodes by employing GNNs initial-
ized with positional encodings and consider these as their potential
edge embeddings. Both families of link prediction techniques suffer
from considerable shortcomings: The former fail to differentiate two
distant nodes with similar neighborhoods; The latter, although prov-
ably appropriate for learning edge representations, adopt undirected
GNNs, positional encodings, and subgraphs, so the edge direction
signal is inevitably lost. Our proposal is also based on the idea of
enclosing subgraphs, but the subgraphs are assumed directed, and
directed Graph Neural Networks (GNNs) are used to learn their node
encodings and initial positional embeddings are direction-aware. Our
emphasis on capturing the direction of edges is reflected in supe-
rior performance in the link prediction task against baselines with
undirected GNNs on symmetrized enclosing subgraphs and existing
directed GNNs over a collection of benchmark graph datasets.

1

1. INTRODUCTION

In recent years graph neural networks (GNNs) have attracted consid-
erable attention as an effective deep learning model for analyzing
graph data([1]). Link prediction (predicting the existence of a link
between two nodes) is one of the graph learning tasks that are broadly
studied in different domains: e.g. in social networks [2], biological
networks [3], recommender systems [4] and knowledge graphs [5].
In many applications the direction of the predicted edge is critical:
In knowledge graphs, subject nodes should point to object nodes;
In citation graphs a derivative work cannot be pointed by earlier re-
search; In causal graphs a node representing an effect should not
prepend its cause. Failure to capture edge directionality could also
have disruptive effects on important downstream application tasks:
e.g. conflicts in induced time orderings, blocked paths to root causes,
distorted flow computations between node sets, etc.

The majority of existing GNN models learn the representation
of a link by combining the representation learned of the two linked
nodes. The linked nodes get their representations through message
passing schemes [6] through aggregation of information from the
neighboring nodes combined with their own features [7, 8, 9]. With

1This work was done during an internship at IBM Research

this approach, nodes that have the same local neighborhood get the
same representation, and hence, node based link prediction may fail
for similar nodes with similar topological structure. Earlier works
that proposed directed GNNs [10, 11, 12] adopted the above approach
so they inhrerit this conceptual flaw.

In [13] the authors identified and formalized two types of en-
codings for graph nodes: structural and positional. GNN produce
structural embeddings, which are highly effective for node labeling
tasks: we want nodes with similar neighborhoods to be close in the
representation space. As mentioned earlier, however, they fail to
induce proper link representations: two nodes with identical local
structure may be undistinguishable and hence lead to a wrong link
prediction. They then show that joint 2-node structural representa-
tions are required for link prediction. On the other hand, positional
encodings are commonly produced by lower-dimensional projections
of the graph adjacency information. Such encodings for nodes that
are close neighbors in the graph are close to each other, implying
that links should most probably exist between nodes with minimal
distances in the corresponding representation space. This is desirable
for the link prediction task.

Our task is directed link prediction, so according to [13] we
would need a scheme of generating either positional or joint 2-node
structural encodings for graph nodes. Our approach blends these two
perspectives in an innovative manner, while emphatically preserving
the asymmetry arising from directed edges in the original graph.
Notably: (i) we use GNN to learn structural encodings but do not use
them directly in link prediction; (ii) we compute positional encodings
but these are only used for GNN initialization.
Structural encodings: We extract a k-hop directed subgraph
Gk(u, v) around potentially linked nodes u, v, hence satisfying the
joint 2-node structural representation requirement for link prediction.
Directed GNN on the subgraph produce structural encodings for
individual nodes in the subgraph, so using them pairwise for link
prediction would be suboptimal. Hence, after computing the encod-
ings of all nodes, we pool them into a single vector summarizing the
subgraph as a whole and we assign it to the node pair.
Positional encodings: We initialize GNN based on spectral vectors
which are positional encodings. They could be used directly for pre-
dicting links, but we only use them as input to the directed GNNs to
produce structural encodings for the nodes. Note that spectral repre-
sentation for a directed subgraph is different from its symmetrized
version and thus our input encodings are direction-aware.

We provide theoretical justification that our directional-aware po-
sitional encodings are valid for learning structural encodings of pairs
of nodes (edges) in directed graphs and empirically validate its effec-
tiveness by testing it on the link prediction task on directed graphs.
Experiments show our proposed approach improves over benchmark
baselines including undirected models with distance-based encoding,
existing methods for node representation in directed graphs and ex-

isting models enhanced with our proposed structural and positional
encodings.

2. RELATED WORK

The idea of representing an edge by the encoding of its enclosing sub-
graph appears in Weisfeiler-Lehman Neural Machine (WLNM) [14]
and the follow up work in SEAL framework [1]. In WLNM, special
emphasis is placed on vertex ordering for the adjacency matrix of the
input subgraph, using the Weisfeiler-Lehman (WL) coloring proce-
dure for its computation. In SEAL, they introduce a distance-based
encoding of nodes in the subgraph and they critically improve on
WLNM by leveraging GNN for node embedding learning. However,
WLNM and SEAL do not address directed graphs, which is our focus
here. We use spectral encodings for input node labeling which are
inherently direction-aware and we process enclosing directed sub-
graphs utilizing directed GNN. A further generalization to multi-node
representations, rather than two-node ones which is effectively our
case with graph edges, is studied in [15].

Our focus is on capturing the directionality of predicted links, so
we train directed GNN for computing the node encodings of the di-
rected subgraphs. In particular, we use digraph convolution (DiGCN)
and its multiscale generalization (DiGCNIB) from [11] and Magnet
from [10]. The directed GNN we use are based on specific defini-
tions of the Laplacian operator for directed graphs, followed by the
standard graph convolution approach in [16]. In [11] they define a
symmetric Laplacian for digraphs in terms of the transition matrix
for personalized PageRank, which is then extended to higher-order
proximity between graph nodes. In [10] a complex-valued, Hermitian
Laplacian matrix is introduced. Another stream of research considers
improving the power of GNN towards getting better representation for
a link by fusing positional and structural encoding [15, 17, 18, 13],
however not including link direction in their analysis or reported
results.

3. MODEL

3.1. Description

Given a pair of nodes (u, v) we (i) extract the directed subgraph
enclosing of them; (ii) compute spectral, positional encodings for the
directed subgraph nodes by levaraging truncated SVD; (iii) do the
same with HITS algorithms; and (iv) concatenate these encodings
and use them as initial inputs in training a directed GNN to compute
subgraph node encodings, which are pooled at the end to represent
the (u, v) pair for the link prediction task. Figure 1 illustrates the
overall approach.
(i) Directed Subgraph Extraction: We extract a k-hop directed sub-
graph Gk(u, v) around the endpoints (u, v) of the potential directed
edge u 7→ v. Let N+(i) = {j|(i, j) ∈ E} be the set of nodes that
i points to, N−(i) the set of source nodes targetting i and N (i) =
N+(i) ∪N−(i) the set of all incident nodes. We recursively define
Gk(u, v) = (Vk(u, v), Ek(u, v)), by setting G0 = (V0, E0) =
({u, v}, ∅) and Gl = (Vl, El) where Vl =

⋃
j∈Vl−1

N (j) and
El = {(i, j) ∈ E|i, j ∈ Vl)}, for l = 1, 2, . . . , k; (u, v) dropped
for notational convenience.
(ii) Direction Aware Positional Encoding Truncated SVD: We com-
pute a variant of truncated SVD of the adjacency matrix Ak(u, v) ∈
Rn×n of subgraph Gk(u, v). More specifically, we compute an ap-
proximation Ud ∈ Rn×d of its left singular subspace corresponding
to its d top singular values in Σd = diag([σ1, σ2, . . . , σd]), where
σ1 ≥ σ2 ≥ . . . ≥ σd. Then the SVD-based encoding for node i in

the subgraph will be the corresponding row of UdΣd. This is also
the projection of the matrix row of Ak(u, v) for i on the top d right
singular vectors, which are columns of Vd. Let us call this encoding
svd[i] ∈ Rd.
(iii) Direction Aware Positional Encoding: HITS Our second, rank
based positional encoding is the combination of the authority value
a and the hub value h. We compute the authority and hub scores for
all nodes in Gk(u, v) using HITS algorithm [19], which is a popular
method for ranking nodes in a directed network. These are scalar
centrality values respectively capturing the importance of nodes as
targets or as sources of directed links and ranking them accordingly;
we organize them in vectors a,h ∈ Rn. a is computed by iteratively
applying x ← A⊤

k Akx, initializing with any vector x and normal-
izing at each step, where we have set Ak(u, v) = Ak. Iterating
x← AkA

⊤
k x we converge to h for similar initialization and normal-

ization strategies. Recalling that truncated SVD is Ak = UdΣdV⊤
d

it follows that AkA
⊤
k = UdΣ

2
dU⊤

d , so the iterative procedure for
computing hub scores h is essentially the power method [20] used for
finding the dominant eigenvector of matrix AkA

⊤
k , which is clearly

the first column in left singular vectors Ud. With analogous argu-
ments, authority scores a is the first column in right singular vectors
Vd. Let us concatenate authority and hub scores for a node i ∈ Vk as
(a[i], h[i]) and call this encoding hits[i] ∈ R2.
(iv) Directed GNN-based Link Prediction: For all nodes i ∈
Vk(u, v), we concatenate HITS and truncated SVD-based positional
encodings, pe[i] = (hits[i]||svd[i]) ∈ Rd+2, use them as
initial inputs for training a graph neural network (GNN), compute
new node embeddings and finally pool them to yield a single vector
representation for the whole subgraph Gk(u, v).

3.2. Theoretical Analysis

In [15] they prove that, with a valid labeling trick, a node-most-
expressive GNN, defined as giving different representations to non-
isomorphic nodes, can learn structural representations of a target
node set S. They detail two conditions for a node labeling scheme
to actually be a labeling trick and a sufficient condition for each of
them to hold. In addition, for directed graphs, where the order in
the target set S is important they comment that it suffices to define a
labeling trick respecting the order of S. The two sufficient conditions
read as (i) “the target nodes S have distinct labels from the rest of the
nodes, so that S is distinguishable from others” and (ii) “the labeling
function is permutation equivariant”. In our case S = (u, v) is the
ordered set of two nodes, which we want to represent. We recall
that the indicator function for S, χS(i), evaluates to 1 if node i ∈ S
and is zero otherwise. χS(i) is the simplest valid labelling trick [15],
referred to as zero-one labelling trick.

Theorem 3.1 (pe[i]||χS(i)) is a labelling trick.

Proof: The zero-one component χS(i) in the encoding clearly dis-
tinguishes nodes in S = (u, v) from those in Vk(u, v) − S, so the
first sufficient condition holds. The second condition is also satisfied:
the positional encoding component pe[i] is based on SVD and
SVD is equivariant; zero-one component χS(i) is also equivariant
from [15]. More specifically, for any permutation π in the set Πn of
permutations over n symbols, π ∈ Πn we can define the respective
permutation matrix P with P(π(j),j) = 1 and vanishing elsewhere.
Then the permuted adjacency matrix corresponding to a permutation
of nodes will read: PAkP⊤ = (PUd)Σd(PVd)

⊤ and this means that
the node encodings are also permuted under the same π. Q.E.D.

Fig. 1: Proposed Framework: First we extract k hop directed subgraph for each directed link in the original graph. Then, we compute
truncated SVD and node ranking for each subgraph and encode the nodes as their positional encoding. Finally, the encoded subgraph is
provided as input to a GNN model to get structural encoding for directed link prediction.

4. EXPERIMENTS

We conducted extensive experiments to evaluate the effectiveness of
our positional encoding for directed link prediction on three GNN
models designed for directed graphs and three other GNN models
designed for undirected graphs. We also compare the performance
with node based variants of the directed GNN models. Additionally,
we compare our direction aware positional encoding with other struc-
tural encodings mainly designed for undirected graphs. We test on
WebKB and citation network datasets, which are directed graphs.

4.1. Datasets and Baselines

We use directed WebKB (Cornell, Texas, Wisconsin) datasets [21];
nodes represent web pages, and edges represent hyperlinks between
them. We also use the directed citation network (Cora-ML, CiteSeer
datasets[22]); nodes represent articles while edges represent citations
between them. We used the indegree and outdegree as the node fea-
tures. The statistics of the datasets are summarized in Table 1.
Baselines: The baseline can be grouped into node based link pre-
diction methods on GNNs designed for directed graphs, which are
Magnet [10], DGCN [12], DiGraphIB [23] and subgraph based link
prediction methods on GNNs designed for undirected graphs, which
are GCN [16], GIN [24], GraphSage [25]. GIN and GraphSage are
implemented by adapting the orignal paper [15]. In all baselines,
ReLU nonlinearities are used in the output of each hidden layer. To
aggregate the neighborhood sum-pooling aggregation is used.

4.2. Experimental Setup

We train three two-layer subgraph based GNNs designed for directed
graphs for directed link prediction, which are Magnet, DGCN and

Table 1: Dataset statistics

Datasets Nodes Edges Features
Cornell 183 295 2
Texas 183 309 2

Wisconsin 251 499 2
CiteSeer 3,312 4,715 2
Cora-ML 2,995 8,416 2

DiGraphIB. We also train three two-layer subgraph based GNNs de-
signed for undirected graphs for directed link prediction. In both
cases, we used our proposed truncated SVD and Rank positional
encodings.
For all the experiments, we use AUC as our evalution metric. We
repeat the experiments 4 times and report the average AUC results.
We use 32 as the batch size and train for 500 epochs. We tune learning
rate η ∈ {10−j , j = 1, 2, 3}; η = 10−3 gives the best performance.
We randomly split the edges of each graph into train/validation/test
sets at 85/05/10 percent. They are balanced sets of k-hop subgraphs
around pairs of nodes u, v which are either connected (positive sam-
ples) or not (negative samples). For the Magnet[10] model, we take
the optimal hyperparameter value of q, which is provided in the
original paper for each dataset.

4.3. Results and Discussion

The results of experiments using our truncated SVD and Rank posi-
tional encodings are shown in Table 2. The results when truncated
SVD and rank positional encoding are used independently are shown
in Table 3 and Table 4. In all cases the bold font is used to indicate
the best performing models.

Directed v.s. undirected GNNs with truncated SVD and Rank
positional encodings. In both cases the performance improvesd
significantly when truncated SVD and Rank positional encodings
are used as input features. The GNNs designed for directed graphs,
however, are exhibiting better improvement than the GNNs designed
for undirected graphs. For example, for CoraML and Cornel datasets,
Magnet and DGCN directed GNNs are the top and second best per-
forming, with 3.13% and 1.28% improvement on Cornel and 5.57%
and 2.07% improvement on CoraML over GIN model designed for
undirected graphs. Except for Texas dataset, Magnet directed GNN
is performing the best for all datasets. This indicats that truncated
SVD and Rank positional encodings are successfully capturing the
directional structural information.
Directed GNNs with both truncated SVD and Rank positional
encodings v.s. without. We compare the performance of Magnet,
DiGraphIB, DGCN directed GNNs with v.s. without positional en-
codings. Table 2 shows clearly that using our encodings improves
the performance by a larg margin. This indicates that, though the
models are designed to capture the directional structural information,
the global directed structural information captured by our positional

Table 2: AUC performance for Directed Link Predition, when both truncated SVD and Rank positional encodings are used.

Model Cornel Texas Wisconsin Citeseer CoraML
GCN(SVD + Rank) 86.16 ± 1.52 87.27 ± 2.77 82.13 ± 2.26 87.97 ± 0.57 88.15 ± 0.73
GIN(SVD + Rank) 88.01 ± 2.75 90.72 ±2.24 90.72 ± 1.68 89.12 ± 0.57 88.28 ± 0.25

SAGE(SVD + Rank) 88.24 ± 3.2 88.88 ± 2.72 89.13 ± 2.27 87.47 ± 1.97 87.92 ± 0.23
DGCN 82.24 ± 3.47 84.01 ± 1.67 82.89 ± 1.74 82.02 ± 0.8 82.92 ± 0.37

DiGraphIB 81.93 ± 1.65 82.72 ± 1.58 81.67 ± 1.74 84.89 ± 0.76 85.27 ± 0.62
Magnet 83.32 ± 2.71 83.01 ± 1.72 84.7 ± 1.92 86.72 ± 1.42 85.77 ± 0.42

DGCN(SVD + Rank) 89.24 ± 2.47 87.04 ± 1.92 87.21 ± 1.74 88.75 ± 0.66 90.21 ± 1.37
DiGraphIB(SVD + Rank) 87.58 ± 2.17 87.01 ± 2.87 88.11 ± 2.74 89.82 ± 0.68 89.2 ± 0.58

Magnet(SVD + Rank) 91.98 ± 1.62 89.98 ± 2.91 90.82 ± 1.08 91.66 ± 0.81 93.85 ± 1.27

Table 3: AUC performance for Directed Link Predition, when only truncated SVD positional encoding is used.

Model Cornel Texas Wisconsin Citeseer CoraML
GCN(SVD) 82.03 ± 1.52 82.57 ± 1.7 77.33 ± 1.8 83.87 ± 1.47 82.87 ± 1.7
GIN(SVD) 84.25 ± 2.1 91.35 ± 3..87 81.32 ± 2.76 85.58 ± 0.74 87.92 ± 0.42

SAGE(SVD) 83.3 ± 2.77 82.21 ± 2.5 81.2 9 ± 1.92 82 ± 0.52 84.57 ± 0.75
DGCN(SVD) 84.86 ± 1.6 80.27 ± 1.6 85.65 ± 1.78 81.29 ± 0.87 83.47 ± 1.21

DiGraphIB(SVD) 85.86 ± 2.12 84.27 ± 2.63 87.65 ± 1.78 85.29 ± 0.87 88.87 ± 0.77
Magnet(SVD) 90.14 ± 2.7 89.69 ± 1.9 91.42 ± 2.1 88.23 ± 1.24 89.08 ± 1.72

Table 4: AUC performance for Directed Link Predition, when only Rank positional encodings is used.

Model Cornel Texas Wisconsin Citeseer CoraML
GCN(Rank) 79.03±1.52 82.57 ± 1.7 77.33 ± 1.8 83.87 ± 1.47 82.87 ± 1.7
GIN(Rank) 86.15 ± 1.31 83.78 ± 2.1 82.56 ± 1.76 87.52 ± 0.42 86.43 ± 0.78

SAGE(Rank) 82.28 ± 1.97 83.79 ± 2.07 81.72 ± 1.34 87.18 ± 0.48 85.51 ± 0.28
DGCN(Rank) 82.72 ± 2.87 83.22 ± 1.73 83.72 ± 2.34 87.18 ± 0.48 83.42 ± 0.52

DiGraphIB(Rank) 83.04 ± 1.07 81.22 ± 3.34 83.92 ± 1.34 88.18 ± 0.28 87.23 ± 0.72
Magnet(Rank) 85.12 ± 1.89 87.22 ± 1.47 83.08 ± 0.87 89.18 ± 0.48 90.08 ± 0.65

encodings is still important.
Comparison truncated SVD and Rank with DRNL positional
encodings. When we use DRNL, which is designed for undirected
graphs, on directed graphs, the results are the worst. This can be seen
by comparing the results in Table 5 and Table 2. This implies that the
existing positional encodings for undirected graph are not suitable for
capturing the global directed structural information.

4.4. Ablation Studies

We conduct ablation studies to examine to what extent truncated
SVD and Rank can independently capture the directed structural
information.
Truncated SVD as positional encoding. As we can see in Table 3,
the performace with trancated SVD alone is still suprisingly good.
The directed GNN models are still performing better on three out
of five directed datasets than the undirected GNN models. This
demostrates that trancated SVD alone as positional encoding is quite
effective for directed graphs.
Rank as positional encoding. Table 4 shows the effect of Rank when
used as positional encoding alone. The results are similar to the case
with truncated SVD alone shown in Table 3. Also we observe that the
GNNs designed for directed graphs are exhibiting better improvement
than the GNNs designed for undirected graphs. This shows that
Rank positional encoding also is capable of capturing global directed

structural information of a directed graph. Comparison between
Tables 2, 3 and 4 shows that combining truncated SVD and Rank,
which are both variants of SVD, imporves the performance further.

Table 5: AUC performance for Directed Link Predition, when Dis-
tance Radius Node Label(DRNL) encoding is used.

Model Cornel Texas Wisconsin Citeseer CoraML
GCN(DRNL) 79.03 81.27 80.72 80.57 81.05
GIN(DRNL) 81.07 79.50 81.62 81.67 82.02

SAGE(DRNL) 79.92 75.76 82.02 82.12 81.17

5. CONCLUSIONS AND FUTURE WORK

We combine specially designed, direction-aware, positional encod-
ings of enclosing subgraph nodes with directed GNN learning in
order to generate provably high-performance encodings for the link
prediction problem in directed graphs. Experiments demonstrate the
sustained efficacy of our approach. Predicting edges and their direc-
tion can be critical in graph applications and is a special case of the
more general problem of co-encoding ordered node sets, which we
plan to research within the context of higher-order representations
(graph-products, tensorial adjacencies).

6. REFERENCES

[1] Muhan Zhang and Yixin Chen, “Link prediction based on graph
neural networks,” Advances in neural information processing
systems, vol. 31, 2018.

[2] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang
Tang, and Dawei Yin, “Graph neural networks for social rec-
ommendation,” in The world wide web conference, 2019, pp.
417–426.

[3] Xiao-Meng Zhang, Li Liang, Lin Liu, and Ming-Jing Tang,
“Graph neural networks and their current applications in bioin-
formatics,” Frontiers in genetics, vol. 12, 2021.

[4] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui,
“Graph neural networks in recommender systems: a survey,”
ACM Computing Surveys (CSUR), 2020.

[5] David Jaime Tena Cucala, Bernardo Cuenca Grau, Egor V
Kostylev, and Boris Motik, “Explainable gnn-based models over
knowledge graphs,” in International Conference on Learning
Representations, 2021.

[6] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol
Vinyals, and George E Dahl, “Neural message passing for
quantum chemistry,” in International Conference on Machine
Learning. PMLR, 2017, pp. 1263–1272.

[7] Thomas N Kipf and Max Welling, “Variational graph auto-
encoders,” arXiv preprint arXiv:1611.07308, 2016.

[8] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin
Chen, “An end-to-end deep learning architecture for graph clas-
sification,” in Proceedings of the AAAI conference on artificial
intelligence, 2018, vol. 32.

[9] Bing Yu, Haoteng Yin, and Zhanxing Zhu, “Spatio-temporal
graph convolutional networks: A deep learning framework for
traffic forecasting,” arXiv preprint arXiv:1709.04875, 2017.

[10] Xitong Zhang, Yixuan He, Nathan Brugnone, Michael Perlmut-
ter, and Matthew Hirn, “Magnet: A neural network for directed
graphs,” Advances in Neural Information Processing Systems,
vol. 34, pp. 27003–27015, 2021.

[11] Zekun Tong, Yuxuan Liang, Changsheng Sun, Xinke Li, David
Rosenblum, and Andrew Lim, “Digraph inception convolutional
networks,” Advances in Neural Information Processing Systems,
vol. 33, 2020.

[12] Zekun Tong, Yuxuan Liang, Changsheng Sun, David S Rosen-
blum, and Andrew Lim, “Directed graph convolutional network,”
arXiv preprint arXiv:2004.13970, 2020.

[13] Balasubramaniam Srinivasan and Bruno Ribeiro, “On the equiv-
alence between positional node embeddings and structural graph
representations,” arXiv preprint arXiv:1910.00452, 2019.

[14] Muhan Zhang and Yixin Chen, “Weisfeiler-lehman neural
machine for link prediction,” in Proceedings of the 23rd ACM
SIGKDD international conference on knowledge discovery and
data mining, 2017, pp. 575–583.

[15] Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long
Jin, “Labeling trick: A theory of using graph neural networks
for multi-node representation learning,” Advances in Neural
Information Processing Systems, vol. 34, pp. 9061–9073, 2021.

[16] Thomas N Kipf and Max Welling, “Semi-supervised classi-
fication with graph convolutional networks,” arXiv preprint
arXiv:1609.02907, 2016.

[17] Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent,
Yoshua Bengio, and Xavier Bresson, “Graph neural networks
with learnable structural and positional representations,” arXiv
preprint arXiv:2110.07875, 2021.

[18] Jiaxuan You, Rex Ying, and Jure Leskovec, “Position-aware
graph neural networks,” in International conference on machine
learning. PMLR, 2019, pp. 7134–7143.

[19] Jon M Kleinberg, “Authoritative sources in a hyperlinked en-
vironment,” Journal of the ACM (JACM), vol. 46, no. 5, pp.
604–632, 1999.

[20] Gene H Golub and Charles F Van Loan, Matrix Computations,
vol. 3, JHU Press, 2013.

[21] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei,
and Bo Yang, “Geom-gcn: Geometric graph convolutional
networks,” arXiv preprint arXiv:2002.05287, 2020.

[22] Aleksandar Bojchevski and Stephan Günnemann, “Deep gaus-
sian embedding of graphs: Unsupervised inductive learning via
ranking,” arXiv preprint arXiv:1707.03815, 2017.

[23] William R Palmer and Tian Zheng, “Spectral clustering for
directed networks,” in International Conference on Complex
Networks and Their Applications. Springer, 2020, pp. 87–99.

[24] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka,
“How powerful are graph neural networks?,” in International
Conference on Learning Representations, 2018.

[25] Will Hamilton, Zhitao Ying, and Jure Leskovec, “Inductive
representation learning on large graphs,” Advances in neural
information processing systems, vol. 30, 2017.

