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Agenda

▪What is the task, “Anomaly Attribution”?

▪What’s wrong with the existing attribution methods?

▪What is the new idea?

▪ Illustrative examples

▪ Summary
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Digital twin is a black-box function to predict a KPI. 
Explainability is crucial. 

▪ Example: Yield prediction as a function of process parameters.
o Mfg. process is so complex that data-driven models (e.g., DNN) are used to get 𝑦 = 𝑓(⋅).

▪ Explainability of prediction is critical for process improvement
Sam Seto, TIBCO Community Article, https://community.tibco.com/s/article/digital-twins-yield-wide-data-manufacturing-using-data-function-tibcor-data-science-team 

https://community.tibco.com/s/article/digital-twins-yield-wide-data-manufacturing-using-data-function-tibcor-data-science-team
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“Anomaly attribution” addresses the key question of digital twins

Given:

▪ Black-box regression model 𝑦 = 𝑓 𝒙  and 
a (set of) test sample (𝒙𝑡 , 𝑦𝑡)
o No access to the model beyond API

o No access to the training data

Explain: 

▪ The deviation 𝑓 𝒙𝑡 − 𝑦𝑡

▪ by computing the attribution score 
(responsibility score) for each of the input 
variables 𝒙.

(𝒙𝑡 , 𝑦𝑡)

deviation

𝑦

Why did I 
get this?

𝑥𝑖

(one of the input variables)
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Why did I 
get this?

Seeking an automated way of computing the responsibility of an 
observed anomaly

Practical requirements of 
anomaly attribution

 

▪ Able to explain the 
deviation (Sounds 
obvious, huh?)

▪ Able to compute the 
uncertainty of the score 
(challenging) 𝑥𝑖

(𝒙𝑡 , 𝑦𝑡)

𝑦

deviation

(one of the input variables)

attribution score (responsibility)
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Agenda

▪What is the task, “Anomaly Attribution”?

▪What’s wrong with the existing attribution methods?

▪What is the new idea?

▪ Illustrative examples
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LIME, Shapley values (SV), and integrated gradient (IG) are three 
major existing black-box attribution methods.

▪ LIME, SV, IG are well-established 
model-agnostic attribution methods
o In: black-box 𝑦 = 𝑓 𝒙  and test sample.

o Out: attribution score for each variable

▪Why bother to develop a new method?

black-box model

anomalous sample

attribution score 
for (𝒙𝒕, 𝒚𝒕)

training data 
(unavailable)

test data 

𝛿1

𝛿6

𝛿3

(𝒙𝑡 , 𝑦𝑡)

They are, in fact,  
deviation-
agnostic.

They can’t 
compute score’s 

uncertainty
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(For ref.) LIME [Ribeiro+ 16] does local sensitivity analysis of the 
black-box function

▪ Sensitivity = gradient = attribution score

▪ Challenge:
o  𝑓(𝒙) is black-box; No way of getting the gradient 

analytically.

▪ Idea: 
o Randomly generate samples around 𝒙𝑡

✓ { 𝒙𝑡 1 , 𝑦𝑡 1 , … , 𝒙𝑡 1 , 𝑦𝑡 𝑁 } where 𝑦𝑡 𝑛 = 𝑓 𝒙𝑡 𝑛 .

o Fit a (sparse) linear model (lasso)

✓ 𝑦 = 𝒂⊤𝒙 + 𝑏

o The regression coefficients is an estimator of the 
gradient (= explanation). 

𝑥𝑖
𝑥𝑖

𝑡

local 
gradient

𝑦

• Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. “Why should I trust you?: Explaining the predictions of any classifier.” 
Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM (2016).

• LIME: Local Interpretable Model-agnostic Explanations 

random 
samples
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(For ref.) Integrated gradient (IG) computes the increment from a 
reference point

▪ Definition of IG [Sipple 20] 
o Increment from a reference point 𝒙0

o The gradient is numerically estimated with a 
LIME-like approach.

o The integral is also evaluated numerically

▪ Expected IG (EIG) [Deng+ 21]
o Computed by marginalizing  𝒙0 with a 

distribution of the reference point
𝑥𝑖

𝑥𝑖
𝑡𝑥𝑖

0

increment

𝑦

• John Sipple. “Interpretable, Multidimensional, Multimodal Anomaly Detection with Negative Sampling for Detection of Device Failure,” In Proceedings of the 37th 
International Conference on Machine Learning (ICML 20).

• Huiqi Deng, et al. , A Unified Taylor Framework for Revisiting Attribution Methods. In Proceedings of the AAAI Conference on Artificial Intelligence. 11462–11469, 2021.

typically empirical distribution of 
the training samples
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(For ref.) Shapley values (SV) originate from game theory. 

▪ SV originated from game theory and are defined without relying on 
geometric interpretations.

▪ The definition is a bit nonintuitive:
o 𝑆𝑖: A variable set (of size 𝑘) excluding 𝑖.
o If 𝑀 = 4, 𝑖 = 1, 𝑘 = 2, and 𝑆1 = {2,3}, 

✓ Δ𝑓 𝑥1
𝑡, 𝑆1 =

1

𝑁
σ𝑛=1

𝑁 [𝑓 𝑥1
𝑡, 𝑥2

𝑡 , 𝑥3
𝑡 , 𝑥4

𝑛
− 𝑓 𝑥1

𝑛
, 𝑥2

𝑡 , 𝑥3
𝑡 , 𝑥4

𝑛
]

▪ SV quantifies the impact of the 𝑖-th variable by contrasting the expected 

values when 𝑥𝑖  is set to 𝑥𝑖
𝑡, versus when 𝑥𝑖  is averaged out.

▪ SV looks mysterious, but fortunately (and unexpectedly), SV ≈ EIG holds!

Erik Štrumbelj and Igor Kononenko. 2014. Explaining prediction models and individual predictions with feature contributions. 
Knowledge and information systems 41, 3 (2014), 647–665.
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Can they explain deviations by changing the target to 𝑓 𝒙 − 𝑦? 
– Actually, no. Summary of theoretical results [Ide-Abe 23].

▪ Result 1: LIME, SV, IG, and EIG are deviation-
agnostic
o This is obvious from the original definition.

✓ They explain 𝑓(𝒙) locally at 𝒙 = 𝒙𝑡, independently 𝑦.
o The conclusion still holds even when the target 

function is 𝑓 𝒙 − 𝑦 rather than 𝑓(𝒙).

▪ Result 2: SV is equivalent to EIG up to the 
second order of power expansion.

▪ Result 3: LIME is equivalent to the derivative of 
IG and EIG

T. Idé, N Abe, “Generative Perturbation Analysis for Probabilistic Black-Box Anomaly Attribution,” In Proceedings of the 29th ACM SIGKDD 
Conference on Knowledge Discovery and Data Mining (KDD 2023, August 6-10, 2023, Long Beach, California, USA), pp. 845-856. 

𝑥𝑖
𝑥𝑖

𝑡𝑥𝑖
0

(𝒙𝑡 , 𝑦𝑡)

increment

local 
gradient

deviation

𝑦

(one of the input variables)
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Agenda

▪What is the task, “Anomaly Attribution”?

▪What’s wrong with the existing attribution methods?

▪What is the new idea?

▪ Illustrative examples



13

Given a test point (𝒙𝑡, 𝑦𝑡) being anomalous, we ask: 
How much “work” would we need to bring it to the normalcy? 

▪ The “work” required for each variable should 
be a natural attribution score.

▪ The outlier P wouldn’t have been anomalous 
if it were at A. 

▪ Hence, the amount of shift, 𝜹, can be viewed 
as the “work,” indicating the responsibility of 
each variable.

▪ How about B? We need a help of 𝑝(𝑦 ∣ 𝒙). 𝑥𝑖

𝑦

(𝒙𝑡 , 𝑦𝑡) 

(𝒙𝑡 + 𝜹, 𝑦𝑡) 

P
A

B

𝑥𝑖
𝑡
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▪We need a generative model to handle the 
ambiguity in prediction.
o The on-the-curve points may not represent normalcy.

▪ Generative process with 𝜹 as model parameter. 
o observation: 𝑝 𝑦 𝒙, 𝜹, 𝜆 = 𝒩(𝑦 ∣ 𝑓 𝒙 + 𝜹 , 𝜆−1)

o prior: 𝑝 𝜹 = 𝒩 𝜹 𝟎, 𝜂𝐈

▪ 𝜹 can be determined by solving 

o 𝛿∗ = argmax𝛿
1

𝑁test
σ𝑡=1

𝑁test ln 𝑝 𝑦𝑡 𝑥𝑡, 𝜹, 𝜆 𝑝(𝜹)

✓ Typically, 𝑁test = 1

Perturbation as explanation:  Likelihood compensation (LC) [Ide+ 21]

𝑥𝑘
𝑥𝑘

𝑡

(𝒙𝑡 , 𝑦𝑡) MAP 
point

𝑦 𝑦 = 𝑓(𝒙)
𝛿𝑘

∗

T. Idé, et al., Naoki Abe, “Anomaly Attribution with Likelihood Compensation,” In Proceedings of the Thirty-
Fifth AAAI Conference on Artificial Intelligence (AAAI 21, February 2-9, 2021, virtual), pp.4131-4138
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▪ The generative process can be viewed as a 
Bayesian inference model for 𝜹. 
o 𝑝 𝑦 𝒙, 𝜹, 𝜆 = 𝒩(𝑦 ∣ 𝑓 𝒙 + 𝜹 , 𝜆−1)

o priors (𝜂, 𝑎0, 𝑏0 are hyperparameters): 

✓ 𝑝 𝜹 = 𝒩 𝜹 𝟎, 𝜂𝐈

✓ 𝑝 𝜆 = Gam(𝜆 ∣ 𝑎0, 𝑏0)

▪ Then, the Bayesian posterior can be viewed as 
a probabilistic version of LC.
o Posterior distribution

Generative perturbation analysis (GPA) [Ide-Abe 23]: Extending LC to 
incorporate uncertainty quantification

𝑥𝑘
𝑥𝑘

𝑡

(𝒙𝑡 , 𝑦𝑡) MAP 
point

𝑦 𝑦 = 𝑓(𝒙)
𝑞𝑘(𝛿𝑘)

𝛿𝑘
∗

T. Idé, N. Abe, “Generative Perturbation Analysis for Probabilistic Black-Box Anomaly Attribution,” In Proceedings of the 29th ACM SIGKDD 
Conference on Knowledge Discovery and Data Mining (KDD 2023, August 6-10, 2023, Long Beach, California, USA), pp. 845-856. 
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▪ Formal solution of the posterior (typically 𝑁test = 1)

▪ How do we get a variable-wise distribution?
o We find an approximated solution by minimizing the 

KL divergence between 𝑄 𝜹  and a factorized from:

o We also use a mean-field-like approximation to get an 
explicit form of 𝑞𝑘 𝛿𝑘 . → paper

Separating the contribution of each variable needs variational 
approximation

𝑥𝑘
𝑥𝑘

𝑡

(𝒙𝑡 , 𝑦𝑡) MAP 
point

𝑦 𝑦 = 𝑓(𝒙)
𝑞𝑘(𝛿𝑘)

𝛿𝑘
∗
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(For ref.) How the GPA algorithm works 

▪ GPA algorithm has two parts: 
o MAP (maximum a posteriori) estimation
o Distribution estimation

▪MAP estimation solves: 

o Use proximal gradient (with ℓ1 regularizer) 
o The gradient is estimated via local sampling 

(like LIME)

▪ Distribution estimation uses a mean-field 
approximation
o “Think of the others fixed to the MAP value 

and focus on yourself.”

MAP

distribution
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Agenda

▪What is the task, “Anomaly Attribution”?

▪What’s wrong with the existing attribution methods?

▪What is the new idea?

▪ Illustrative examples
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“Why did they exhibit anomalous energy consumption?”
Building energy use-case

anomaly score

LC

LIME

Z-score

▪ One month-worth building energy data
o y: energy consumption
o x: time of day, temperature, humidity, sun radiation, day of week 

(one-hot encoded)

▪ The score is computed based on hourly 24 test points for 
each day
o The mean of the absolute values are visualized

▪ LC pinpoints the root cause: The big scores on daytime_Su 
and daytime_Sa imply they look like holidays, which is indeed 
correct! 

▪ LIME is insensitive to outliers

▪ Z-score does not depend on y (by definition)
o The artifact for the day-of-week variables is due to one-hot encoding
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“Why does this house look so unusual?”
House hunting use-case

▪ Boston Housing data
o y: house price

o x: house age, # rooms, neighborhood crime rate, etc. 

▪ Computed attribution scores for the top outlier.
o GPA was able to provide variable-specific distributions

▪ Is it a bargain? Probably yes. 
o It’s got unusually larger #rooms (RM) and lower poor 

neighbors (LSTAT) than the peers in the same price range.

anomaly 
score
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“Why does this patient look so unusual?”
Healthcare use-case

▪ Diabetes data
o y: diabetes’ progression (numerical score)
o x: biomarkers (BMI, blood pressure, etc.)

▪ Computed attribution score for the 
top outlier (patient # 63).
o Found a large negative score in BMI 

✓ The high and narrow pdf translates to 
high confidence

o For his progression level, he would look 
like a regular patient if BMI were much 
smaller: 
✓ “He is overweight but healthy (low 

progression)” or “He is healthy despite 
overweight”

attribution score 
distribution
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Agenda

▪What is the task, “Anomaly Attribution”?

▪What’s wrong with the existing attribution methods?

▪What is the new idea?

▪ Illustrative examples

▪ Summary
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Summary

▪ Introduced the task of black-box anomaly attribution.

▪ Rather surprisingly, existing major black-box attribution methods are not 
capable of explaining deviations. 

▪ Introduced the new notion of likelihood compensation (LC, [Ide+ 21]) and its 
probabilistic extension (GPA, [Ide-Abe 23]).  
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Thank you!
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