
Generative Perturbation Analysis for Probabilistic Black-Box
Anomaly Attribution

Tsuyoshi Idé

tide@us.ibm.com

IBM Research, Thomas J. Watson Research Center

Yorktown Heights, New York, USA

Naoki Abe

nabe@us.ibm.com

IBM Research, Thomas J. Watson Research Center

Yorktown Heights, New York, USA

ABSTRACT

We address the task of probabilistic anomaly attribution in the black-

box regression setting, where the goal is to compute the probability

distribution of the attribution score of each input variable, given an

observed anomaly. The training dataset is assumed to be unavailable.

This task differs from the standard XAI (explainable AI) scenario,

since we wish to explain the anomalous deviation from a black-box

prediction rather than the black-box model itself.

We begin by showing that mainstream model-agnostic expla-

nation methods, such as the Shapley values, are not suitable for

this task because of their “deviation-agnostic property.” We then

propose a novel framework for probabilistic anomaly attribution

that allows us to not only compute attribution scores as the predic-

tive mean but also quantify the uncertainty of those scores. This

is done by considering a generative process for perturbations that

counter-factually bring the observed anomalous observation back

to normalcy. We introduce a variational Bayes algorithm for deriv-

ing the distributions of per variable attribution scores. To the best

of our knowledge, this is the first probabilistic anomaly attribution

framework that is free from being deviation-agnostic.
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1 INTRODUCTION

Over the last decade, we have witnessed a dramatic resurgence

of deep neural networks (DNNs) and numerous attempts to use

DNNs in real-world applications. Despite their remarkable achieve-

ments, growing concerns are also expressed regarding the lack of
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Figure 1: Problem setting and motivation. (a) Given a black-

box deterministic regressionmodel and anomalous sample(s),

our goal is to find the probability distribution of input vari-

ables’ responsibility scores without access to the training

data. (b) Existing attribution methods attempt to explain ei-

ther the local gradient or the increment from a reference

point 𝒙0
, rather than the deviation of the sample in question.

transparency in advanced machine learning (ML) algorithms, mak-

ing explainable artificial intelligence (XAI) an active research area

in the data mining community. While early XAI studies tended

to focus on the psychological aspects of how AI should be made

explainable, the bulk of research interest is now shifting towards

actionability in business and industrial applications, as the adoption

of AI is becoming more widespread [15, 22].

One important problem in this context is how to explain an

unusual event, observed as a significant discrepancy from the pre-

diction of an ML model. Although this problem encompasses vari-

ous different scenarios, we are particularly interested in the task

of anomaly attribution in the doubly black-box regression

setting (see Fig. 1 (a)): We are given a black-box regression model

𝑦 = 𝑓 (𝒙), where 𝑦 is the real-valued noisy output (such as miles

per gallon) and 𝒙 is a vector of noisy real-valued input variables

(such as driver’s weight and average speed). We have access to the

API (application programming interface) of 𝑓 (·) but do not have

access to either its parametric form or training data (hence, “dou-

bly”). Given a limited amount of test samples, we ask: how can we

quantify the contribution of each input variable in the face of an

unexpected deviation between observation and prediction?

This question has typically been addressed with one of the fol-

lowing threemodel-agnostic post-hoc XAImethods in the literature:

1) Local linear surrogate modeling, which is best known under the

name LIME (Local Interpretable Model-agnostic Explanations) [33];

2) Shapley value (SV), which was first introduced to the ML com-

munity by [41]; and 3) integrated gradient (IG) [44].
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Despite their popularity, however, there are two major limi-

tations with those methods. One is that all of them are, in fact,

“deviation-agnostic,” meaning that they explain the black-box

function 𝑓 (·) itself in the form of the local gradient or an incre-

ment, not the observed deviation, as illustrated in Fig. 1 (b). Here,

note that, unlike the standard XAI scenarios, we seek explanations

relative to the deviation from a black-box prediction, as we will

discuss in detail later. The other limitation is that they have lim-

ited capabilities of quantifying the uncertainty of the attribution

scores. Motivated by the requirements from industrial applications,

e.g., [29], uncertainty quantification (UQ) of attribution scores is

becoming a major topic in XAI research. In the black-box setting

without access to the training data, however, this problem is consid-

ered extremely challenging and limited work has been done to date.

Existing works include empirical comparative studies, e.g., [48, 50],

and semi-theoretical analysis based on known results of probabilis-

tic linear regression [12, 16, 39, 49].

In this paper, we propose a novel probabilistic framework called

the generative perturbation analysis (GPA) for anomaly attri-

bution in the black-box regression setting, which we believe is the

first fully probabilistic black-box attribution algorithm. The key

idea is to consider a counterfactual data generative process includ-

ing perturbation 𝜹 as a model parameter, and reduce the task of

attribution to that of statistical parameter estimation. In this way,

the uncertainty in attribution is naturally evaluated by finding its

posterior distribution. Here we additionally introduce a novel idea

of using variational Bayes inference to decompose the contribution

of each of the input variables.

To summarize, our contributions are: 1) to mathematically show

that the existing attribution methods have the deviation-agnostic

property; 2) to uncover their interrelationship that has been hitherto

unnoticed; and 3) to propose the first generative framework for

anomaly attribution.

2 RELATEDWORK

Anomaly attribution has been studied as a sub-task of anomaly

detection in the ML community, typically in the white-box unsu-

pervised setting. In the supervised setting, the majority of prior

works are about either model- or classification-specific algorithms.

For example, saliency maps [35, 36] and layer-wise relevance prop-

agation [26] are well-known model-specific attribution methods.

Sainyam et al. [11] leveraged a counterfactual framework [14] for

probabilistic black-box explanations in the classification setting

with binary variables. Similar approaches have been discussed un-

der the terms like perturbation-based or mask-based (e.g. [8, 9, 32]),

but most of them are for classification without the capability of

computing the distribution of attribution score and are not directly

applicable to the present setting.

In themodel-agnostic regression setting, 1) local linear modeling,

2) SV, and 3) IG have been widely used for black-box attribution, as

summarized in Table 1, along with three additional methods: The

expected integrated gradient (EIG) [6], which is a generalized ver-

sion of IG, the 𝑍 -score, which is a standard outlier detection metric

in the unsupervised setting, and likelihood compensation (LC) [20],

which conducts a semi-probabilistic analysis for attribution. In the

context of anomaly attribution, LIME and its variant have been

applied to anomaly explanation [13, 47]. SV is used in sensor fault

diagnosis [18] and for explaining unexpected observations in crop

yield analysis [25] and unusual warranty claims [1]. Also, the use

of IG for anomaly explanation is discussed by Sipple [37, 38].

Interestingly, it has been suggested that these attribution meth-

ods may have some mutual connection. Prior work along this line

includes Deng et al. [6], which attempted to characterize IG using

Taylor expansion and gave the first definition of EIG. Also, Sun-

dararajan and Najmi [43] proposed a unified attribution framework,

where they pointed out that there can be a few different definitions

for SV and discussed the relationship with IG in a qualitative man-

ner. Lundberg and Lee [24] reintroduced the SV-based attribution

method [41] to propose a hybrid method between SV and LIME.

Inspired by these works, we go one step further in this paper: We

explicitly show a mathematical relationship between those existing

attribution methods, and show that the deviation-agnostic property

(see the ‘𝑦-sensitive’ column in Table 1) is an inherent consequence

of the common mathematical structure.

Another important contribution of this paper is the proposal of

a principled framework for probabilistic prediction of attribution

scores. Most of the existing works tackling this problem [12, 39, 49]

under settings similar to ours use the standard result of probabilistic

linear regression (see, e.g., Chap. 3 of [3]) to evaluate uncertainty

in the regression coefficients as the LIME attribution score (the

’built-in UQ’ column in Table 1). However, the black-box model

𝑓 (𝒙) is generally highly nonlinear; It is not clear to what extent

the theoretical results of the linear model apply. Also, it is not clear

how the distribution of the attribution score is computed for each

input variable (hence ‘yes/no’ in the table). In fact, BayLIME [49]’s

posterior covariance is a constant that depends only on the hyper-

parameters independently of 𝑓 (·) (See Sec. 6.3). LC [20] shares a

similar starting point with ours but differs fundamentally in that it

is not able to compute the probability distribution of the attribution

score. Guo et al. [16] used a Dirichlet-enhanced probabilistic linear

regression mixture but it is intended for global model explanations

rather than local anomaly attribution.

3 PROBLEM SETTING

As mentioned earlier, we focus on the task of anomaly attribution in

the regression setting rather than classification or unsupervised set-

tings. Figure 1 (a) summarizes the overall problem setting. Suppose

we have a (deterministic) regression model 𝑦 = 𝑓 (𝒙) in the doubly
black-box setting: Neither the training data set Dtrain nor the (true)

distribution of 𝒙 is available (see the ‘training-data-free’ column in

Table 1). Throughout the paper, the input variable 𝒙 ∈ R𝑀 and the

output variable 𝑦 ∈ R are assumed to be noisy real-valued, where
𝑀 is the dimensionality of the input vector. We also assume that

queries to get the response 𝑓 (𝒙) can be performed cheaply at any 𝒙 .
In practice, anomaly attribution is typically coupled with anom-

aly detection: When we observe a test sample (𝒙, 𝑦) = (𝒙𝑡 , 𝑦𝑡 ),
we first compute an anomaly score 𝑎𝑡 = 𝑎(𝒙𝑡 , 𝑦𝑡 ) to quantify how

anomalous it is. Then, if 𝑎𝑡 ∈ R is high enough, we go to the next

step of anomaly attribution. In this scenario, the task of anomaly

attribution is defined as follows.

Definition 1 (probabilistic anomalyattribution). Given
a black-box regression model 𝑦 = 𝑓 (𝒙) and observed test sample(s),
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Table 1: Comparison of model-agnostic attribution methods in the regression setting.

model-agnostic training-data-free baseline-input-free 𝑦-sensitive built-in UQ reference point

LIME [33] yes yes yes no yes/no infinitesimal vicinity

SV [41, 42] yes no yes no no globally distributional

IG [37, 44] yes yes no no no arbitrary

EIG [6] yes no yes no no globally distributional

Z-score [5] yes no yes no no global mean of predictors

LC [20] yes yes yes yes no maximum likelihood point

GPA yes yes yes yes yes maximum a posteriori point

compute the distribution of the score for each input variable indicative
of the extent to which that variable is responsible for the sample being
anomalous.

We can readily generalize the problem to that of collective proba-
bilistic anomaly detection and attribution. Specifically, given a test

data setDtest = {(𝒙𝑡 , 𝑦𝑡 ) | 𝑡 = 1, . . . , 𝑁test}, where 𝑡 is the index for
the 𝑡-th test sample and 𝑁test is the number of test samples, we can

consider anomaly score as well as attribution score distributions

for the whole test set Dtest.

The standard approach to anomaly detection is to use the

negative log-likelihood of the test sample(s) as the anomaly score

(See, e.g., [23, 28, 40, 45, 46]). Assume that, from the deterministic

regression model, we can somehow obtain 𝑝 (𝑦 | 𝒙), a probability
density over 𝑦 given the input signal 𝒙 . Under the i.i.d. assumption,

the anomaly score can be written as

𝑎(𝒙𝑡 , 𝑦𝑡 ) = − ln𝑝 (𝑦𝑡 | 𝒙𝑡 ), or, (1)

𝑎(Dtest) = − 1

𝑁test

∑𝑁test

𝑡=1
ln𝑝 (𝑦𝑡 | 𝒙𝑡 ), (2)

corresponding to the single sample and collective cases, respectively.

Anomaly attribution is the task to attribute a high anomaly score

to each of the input variables.

Notation. We use boldface to denote vectors. The 𝑖-th dimension

of a vector 𝜹 is denoted as 𝛿𝑖 . The ℓ1 and ℓ2 norms of a vector

are denoted by ∥ · ∥1 and ∥ · ∥2, respectively, and are defined as

∥𝜹 ∥1 ≜
∑
𝑖 |𝛿𝑖 | and ∥𝜹 ∥2 ≜

√︃∑
𝑖 𝛿

2

𝑖
. The sign function sign(𝛿𝑖 ) is

defined as being 1 for 𝛿𝑖 > 0, and −1 for 𝛿𝑖 < 0. For 𝛿𝑖 = 0, the

function takes an indeterminate value in [−1, 1]. For a vector input,
the definition applies element-wise, yielding a vector of the same

size as the input vector. We distinguish between a random variable

and its realizations via the absence or presence of a superscript. For

notational simplicity, we use 𝑝 (·) or 𝑃 (·) as a proxy to represent

different probability distributions, whenever there is no confusion.

For instance, 𝑝 (𝒙) is used to represent the probability density of

a random variable 𝒙 while 𝑝 (𝑦 | 𝒙) is a different distribution of

another random variable 𝑦 conditioned on 𝒙 .

4 EXISTING ATTRIBUTION METHODS ARE

DEVIATION-AGNOSTIC

This section summarizes our remarkable new results on the existing

attribution methods: 1) IG, SV, and LIME are inherently deviation-

agnostic and are not appropriate for anomaly attribution, 2) SV is

equivalent to EIG up to the second order in the power expansion,

and 3) LIME can be derived as the derivative of IG or EIG in a certain

limit. Throughout this subsection, we assume that the derivative of

the black-box regression function 𝑓 (·) is computable somehow to

an arbitrary order.

Formally, the deviation-agnostic property is defined as follows:

Definition 2 (deviation-agnostic). An anomaly attribution
method 𝐴 is said to be deviation-agnostic if for any black-box re-
gression model 𝑓 (·), observed test sample (𝒙𝑡 , 𝑦𝑡 ), deviation Δ and
input variable 𝑖 , 𝐴𝑓 ,𝑖 (𝒙𝑡 , 𝑦𝑡 ) = 𝐴𝑓 ,𝑖 (𝒙𝑡 , 𝑦𝑡 + Δ), where 𝐴𝑓 ,𝑖 (𝒙𝑡 , 𝑦𝑡 )
denotes the attribution score computed by 𝐴 for 𝑓 , 𝑖 and (𝒙𝑡 , 𝑦𝑡 ).

We often drop the subscript 𝑓 when it is clear from the context.

4.1 Deviation-agnostic properties

4.1.1 LIME. In general, the local linear surrogate modeling ap-

proach fits a linear regression model locally to explain a black-

box function in the vicinity of a given test sample (𝒙𝑡 , 𝑦𝑡 ). For
anomaly attribution, we need to consider the deviation function
𝐹 (𝒙, 𝑦) ≜ 𝑓 (𝒙) − 𝑦 instead of 𝑓 (𝒙). Algorithm 1 summarizes the

local anomaly attribution procedure. Let 𝛽𝑖 denote the 𝑖-th output

by LIME𝑖 (𝒙𝑡 , 𝑦𝑡 ). Rather unexpectedly, despite the modification to

fit 𝐹 (𝒙, 𝑦) rather than 𝑓 (𝒙), the following property holds:

Theorem 1. LIME is deviation-agnostic: LIME𝑖 (𝒙𝑡 , 𝑦𝑡 ) = LIME𝑖 (𝒙𝑡 ).

Proof. With 𝜈 being the ℓ1 regularization strength, the loss func-

tion for LIME is written as

Ψ(𝜷, 𝛽0) =
1

𝑁𝑠

𝑁𝑠∑︁
𝑛=1

(𝑧𝑡 [𝑛] − 𝛽0 − 𝜷⊤𝒙𝑡 [𝑛] )2 + 𝜈 ∥𝜷 ∥1,

=
1

𝑁𝑠

𝑁𝑠∑︁
𝑛=1

(𝑓 (𝒙𝑡 [𝑛] ) − (𝑦𝑡 + 𝛽0) − 𝜷⊤𝒙𝑡 [𝑛] )2 + 𝜈 ∥𝜷 ∥1,

which is equivalent to the lasso objective for LIMEwith the intercept

𝑦𝑡 + 𝛽0. Since the lasso objective is convex, the solution 𝜷 is unique.

With an arbitrary adjusted intercept, the attribution score 𝜷 remains

unchanged. Hence, ∀𝑖 , LIME𝑖 (𝒙𝑡 , 𝑦𝑡 ) = LIME𝑖 (𝒙𝑡 ). □

In the local linear surrogate modeling approach, the final attribu-

tion score can vary depending on the nature of the regularization

term. For the theoretical analysis below, we use a generic algorithm

by setting 𝜈 → 0+ in Algorithm 1, and call the resulting attribution

score LIME
0

𝑖
for 𝑖 = 1, . . . , 𝑀 . As is well-known, LIME

0

𝑖
is a local

estimator of 𝜕𝑓 /𝜕𝑥𝑖 at 𝒙 = 𝒙𝑡 if 𝑓 is locally differentiable.

4.1.2 Integrated gradient. For anomaly attribution, which is an

input attribution task, IG [37, 44] should be computed for the devi-

ation function 𝐹 (𝒙, 𝑦) ≜ 𝑓 (𝒙) − 𝑦 rather than 𝑓 alone as

IG𝑖 (𝒙𝑡 , 𝑦𝑡 | 𝒙0, 𝑦0) ≜ (𝑥𝑡𝑖 − 𝑥
0

𝑖 )
∫

1

0

d𝛼
𝜕𝐹

𝜕𝑥𝑖

����
𝛼

(3)
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Algorithm 1 Local linear surrogate model for 𝐹 (𝒙, 𝑦)
Require: 𝑓 (𝒙), test point (𝒙𝑡 , 𝑦𝑡 ), regularization parameter 𝜈 .

1: Randomly populate 𝑁𝑠 points {𝒙𝑡 [1] , . . . , 𝒙𝑡 [𝑁𝑠 ] } in the vicin-

ity of 𝒙𝑡 (𝑁𝑠 ∼ 1000).
2: Compute the deviation 𝑧𝑡 [𝑛] ≜ 𝑓 (𝒙𝑡 [𝑛] ) − 𝑦𝑡 for all 𝑛.
3: Fit a linear model 𝑧 = 𝛽0 + 𝜷⊤𝒙 using the ℓ1 weight 𝜈 to the

dataset {(𝒙𝑡 [𝑛] , 𝑧𝑡 [𝑛] ) | 𝑛 = 1, . . . , 𝑁𝑠 }.
4: return 𝜷 , which is the local attribution score at (𝒙𝑡 , 𝑦𝑡 ).

for 𝑖 = 1, . . . , 𝑀 , where the gradient is estimated at 𝒙 = 𝒙0 + (𝒙𝑡 −
𝒙0)𝛼 and 𝑦 = 𝑦0 + (𝑦𝑡 − 𝑦0)𝛼 . The baseline input (𝒙0, 𝑦0) has
to be determined from prior knowledge. We also define EIG by

integrating out the baseline input:

EIG𝑖 (𝒙𝑡 , 𝑦𝑡 ) ≜
∫

d𝑦0

∫
d𝒙0𝑃 (𝒙0, 𝑦0)IG𝑖 (𝒙𝑡 , 𝑦𝑡 | 𝒙0, 𝑦0), (4)

where 𝑃 (𝒙, 𝑦) is the joint distribution of 𝒙 and 𝑦, which is actually

unavailable in our setting. The following property holds:

Theorem 2. IG and EIG are deviation-agnostic: IG𝑖 (𝒙𝑡 , 𝑦𝑡 ) =

IG𝑖 (𝒙𝑡 ) and EIG𝑖 (𝒙𝑡 , 𝑦𝑡 ) = EIG𝑖 (𝒙𝑡 ).

Proof. We define

IG𝑖 (𝒙𝑡 | 𝒙0) ≜ (𝑥𝑡𝑖 − 𝑥
0

𝑖 )
∫

1

0

d𝛼
𝜕𝑓

𝜕𝑥𝑖

����
𝒙0+(𝒙𝑡−𝒙0 )𝛼

(5)

and EIG𝑖 (𝒙𝑡 ) ≜
∫

d𝒙0𝑃 (𝒙0)IG𝑖 (𝒙𝑡 | 𝒙0). Since 𝜕𝐹
𝜕𝑥𝑖

=
𝜕𝑓
𝜕𝑥𝑖

, the state-

ment about IG holds. Also, for EIG, the integration w.r.t.𝑦0
produces∫

d𝑦0𝑃 (𝒙0, 𝑦0) = 𝑃 (𝒙0), yielding EIG𝑖 (𝒙𝑡 , 𝑦𝑡 ) = EIG𝑖 (𝒙𝑡 ). □

4.1.3 Shapley value. There are a few different versions of SV in

the literature [43]. Here we adopt the definition of the conditional

expectation SV applied to the deviation function:

SV𝑖 (𝒙𝑡 , 𝑦𝑡 ) =
1

𝑀

𝑀−1∑︁
𝑘=0

(
𝑀 − 1

𝑘

)−1 ∑︁
S𝑖 : |S𝑖 |=𝑘

Δ𝑓 (S𝑖 ), (6)

where S𝑖 denotes any subset of the variable indices 𝑖 ∈ {1, . . . , 𝑀}
excluding 𝑖 . |S𝑖 | is the size of S𝑖 . The second summation runs

over all possible choices of S𝑖 under the constraint |S𝑖 | = 𝑘 from

the first summation. We also define the complement
¯S𝑖 , which is

the subset of {1, . . . , 𝑀} excluding 𝑖 and S𝑖 . For example, if 𝑀 =

12, 𝑖 = 3 and S𝑖 = {1, 2}, the complement
¯S𝑖 will be {4, 5, . . . , 12}.

Corresponding to this division, we rearrange the𝑀 variables as 𝒙 =

(𝑥𝑖 , 𝒙S𝑖 , 𝒙 ¯S𝑖 ). Finally, the Δ𝑓 (S𝑖 ) term is defined as the difference

between the expected values of 𝐹 under two different conditions:

One is (𝑥𝑖 , 𝒙S𝑖 , 𝑦) = (𝑥𝑡𝑖 , 𝒙
𝑡
S𝑖 , 𝑦

𝑡 ) with 𝒙 ¯S𝑖 to be integrated out. The

other is (𝒙S𝑖 , 𝑦) = (𝒙𝑡S𝑖 , 𝑦
𝑡 ) with (𝑥𝑖 , 𝒙 ¯S𝑖 ) to be integrated out. We

denote them by ⟨𝐹 | 𝑥𝑡
𝑗
, 𝒙𝑡S𝑗 , 𝑦

𝑡 ⟩ and ⟨𝐹 | 𝒙𝑡S𝑗 , 𝑦
𝑡 ⟩, respectively.

The following property holds:

Theorem 3. SV is deviation-agnostic: SV𝑖 (𝒙𝑡 , 𝑦𝑡 ) = SV𝑖 (𝒙𝑡 ).

Proof. Since 𝐹 is linear in𝑦, we can easily see that ⟨𝐹 | 𝑥𝑡
𝑗
, 𝒙𝑡S𝑗 , 𝑦

𝑡 ⟩ =
⟨𝑓 | 𝑥𝑡

𝑗
, 𝒙𝑡S𝑗 ⟩ − 𝑦

𝑡
and ⟨𝐹 | 𝒙𝑡S𝑗 , 𝑦

𝑡 ⟩ = ⟨𝑓 | 𝒙𝑡S𝑗 ⟩ − 𝑦
𝑡
hold, which

implies SV𝑖 (𝒙𝑡 , 𝑦𝑡 ) = SV𝑖 (𝒙𝑡 ). □

4.2 Relationship between IG, SV, and LIME

The fact that (E)IG, SV, and LIME share the same deviation-agnostic

property suggests that they may share a common mathematical

structure. In what follows, we show two results showing the inter-

relationship between them.

4.2.1 SV and EIG. First, let us consider the relationship between

SV and EIG. The integral in IG and the combinatorial definition

SV are major obstacles in getting deeper insights into what they

really represent. This issue can be partially resolved by resorting

to power expansion. The following remarkable property holds:

Theorem 4 (Eqivalence of SV to EIG). a) SV𝑖 is equivalent to
EIG𝑖 for ∀𝑖 up to the second order of the power expansion. b) SV and
EIG satisfy exactly the same sum rule:

𝑀∑︁
𝑖=1

SV𝑖 (𝒙𝑡 ) =
𝑀∑︁
𝑖=1

EIG𝑖 (𝒙𝑡 ) = 𝑓 (𝒙) − ⟨𝑓 ⟩, (7)

where ⟨𝑓 ⟩ ≜
∫

d𝒙 𝑃 (𝒙) 𝑓 (𝒙).

We leave the proof to our companion paper [19] due to space

limitations. While the sum rule b) is known, Theorem 4 a) is the

first result directly establishing the fact that ∀𝑖, SV𝑖 ≈ EIG𝑖 , to the

best of our knowledge. In Sec. 6, we empirically show that indeed

SV and EIG systematically give similar attribution scores.

4.2.2 LIME and EIG. Second, let us now consider the relationship

between LIME and EIG. LIME, as a local linear surrogate modeling

approach, differs from EIG and SV in two regards. First, LIME

does not need the true distribution 𝑃 (𝒙). Instead, it uses a local

distribution to populate local samples. Second, LIME is defined

as the gradient, not a differential increment. These observations

lead us to an interesting question: Is the derivative of EIG in the

local limit the same as the LIME attribution score? The following

theorem answers this question affirmatively:

Theorem 5 (LIME and IG). The derivative of IG and EIG is equiv-
alent to LIME:

LIME
0

𝑖 (𝒙
𝑡 )= lim

𝜂→0

𝜕EIG𝑖 (𝒙𝑡 )
𝜕𝑥𝑖

= lim

𝒙0→𝒙𝑡

𝜕IG𝑖 (𝒙𝑡 | 𝒙0)
𝜕𝑥𝑖

, (8)

where the localized Gaussian 𝑃 (𝒙0) = N(𝒙 | 𝒙𝑡 , 𝜂I𝑀 ) is used in the
definition of EIG.

We leave the proof to our companion paper [19]. Since EIG, SV,

and LIME can be derived from or associated with IG, it is legitimate

to say that they are in the integrated gradient (IG) family. Since
IG is deviation-agnostic, we conclude that the deviation-agnostic

property is a common characteristic of the IG family.

4.2.3 Increment vs. deviation and local vs. global. Now let us con-

sider the implications of these results in anomaly attribution. The

definition of IG in Eq. (3) indicates that IG explains the increment of
𝑓 (·) from the baseline point rather than the deviation, as illustrated

in Fig. 1. The baseline is arbitrary. Hence, the increment is not di-

rectly relevant to the observed anomaly in general. EIG (and thus SV

by Theorem 4) neutralizes this limitation by taking the expectation.

However, it results in losing the locality of explanation because it

attempts to explain the increment from any point in the domain,

as suggested in [21] regarding SV. They are unsuitable for anomaly
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attribution due to both their deviation-agnostic property and the

lack of locality. LIME, on the other hand, maintains the locality

by choosing the baseline input in the infinitesimal neighborhood,

i.e., 𝒙0 → 𝒙𝑡 , but it is still deviation-agnostic.
In general, we need a certain reference point to define anoma-

lousness (cf. the ‘reference point’ column in Table 1). The above

observations motivate us to explore a new idea in choosing a ref-

erence point. In this regard, the likelihood-based approach first

proposed by the present authors [20] is quite suggestive. Inspired

by [20], we propose a novel generative framework for anomaly

attribution, where the notion of normalcy is equated to maximum

a posteriori (MAP) estimation, as presented in the next section.

5 GENERATIVE PERTURBATION ANALYSIS

We have argued that the existing attribution methods are not suit-

able for anomaly attribution due to their deviation-agnostic prop-

erty and/or limited built-in mechanism for evaluating the uncer-

tainty of attribution. This section presents the method of generative

perturbation analysis (GPA), a novel probabilistic framework for

anomaly attribution that addresses these issues.

5.1 Generative model description

In a typical anomaly detection scenario, samples in the training

dataset are assumed to have been collected under normal conditions,

and hence, the learned function 𝑦 = 𝑓 (𝒙) represents normalcy as

well. As discussed in Sec. 3, the canonical measure of anomalousness

is the negative log likelihood − ln𝑝 (𝑦 | 𝒙). A low likelihood value

signifies anomaly, and vice versa. From a geometric perspective,

on the other hand, being an anomaly implies deviating from a

certain normal value. We are interested in integrating these two

perspectives.

5.1.1 Perturbation as explanation. Suppose we just observed a test

sample (𝒙𝑡 , 𝑦𝑡 ) being anomalous because of a low likelihood value.

Given the regression function 𝑦 = 𝑓 (𝒙), there are two possible

geometric interpretations on the anomalousness (see Figs. 1 (b)

and 2 (a)). One is to start with the input 𝒙 = 𝒙𝑡 , and observe the

deviation 𝑓 (𝒙𝑡 ) − 𝑦𝑡 . In some sense, (𝒙, 𝑦) = (𝒙𝑡 , 𝑓 (𝒙𝑡 )) is a refer-
ence point against which the observed sample (𝒙𝑡 , 𝑦𝑡 ) is judged.
The other is to start with the output 𝑦 = 𝑦𝑡 , and move horizontally,

looking for a perturbation 𝜹 such that 𝒙 = 𝒙𝑡 + 𝜹 gives the maxi-

mum possible fit to the normal model. In this case, the reference

point is (𝒙𝑡 + 𝜹, 𝑦𝑡 ) and 𝜹 is the deviation measured horizontally.

Since 𝜹 is supposed to be zero if the sample is perfectly normal,

each component 𝛿1, . . . , 𝛿𝑀 can be viewed as a value indicative of

the responsibility of each input variable.

5.1.2 Generative model. Based on the intuition above, we define a

novel probabilistic attribution approach through a data-generating

process of observed data. The idea is that we write down a gen-

erative process for the observable variables (𝒙, 𝑦) as a parametric
model of 𝜹 . Then, the whole task of anomaly attribution is reduced
to a parameter estimation problem, given an observed test point

(𝒙, 𝑦) = (𝒙𝑡 , 𝑦𝑡 ). Specifically, the probabilistic regression model

𝑝 (𝑦 | 𝒙) is now viewed as a parametric model 𝑝 (𝑦 | 𝒙, 𝜹) by setting
𝒙 to 𝒙 + 𝜹 . With an extra parameter 𝜆 representing the precision of

the regression function and also prior distributions for 𝜆 and 𝜹 , we

consider the following generative process:

𝑝 (𝑦𝑡 | 𝒙𝑡 , 𝜹, 𝜆) =
(
𝜆

2𝜋

)− 1

2

exp

{
−𝜆[𝑦

𝑡 − 𝑓 (𝒙𝑡 + 𝜹)]2
2

}
(9)

𝑝 (𝜹) = N(𝜹 | 0, 𝜂−1I𝑀 ) ≜ (2𝜋)−
𝑀
2 𝜂−

1

2 exp

{
−𝜂

2

∥𝜹 ∥2
2

}
, (10)

𝑝 (𝜆) = Gam(𝜆 | 𝑎0, 𝑏0) ≜
𝑏
𝑎0

0

Γ(𝑎0)
𝜆𝑎0−1

exp(−𝑏0𝜆), (11)

where N(· | ·, ·) and Gam(· | ·, ·) denote the Gaussian and gamma

distributions, respectively, and 𝜂, 𝑎0, 𝑏0 are hyperparameters. As

mentioned above, 𝜹 plays the role of a model parameter here. No-

tice that Eq. (9) naturally represents the horizontal point-seeking

mentioned above. If we point-estimated 𝜹 with Eq. (9) alone, we

would have the one that achieves 𝑓 (𝒙𝑡 + 𝜹) ≈ 𝑦𝑡 . The challenge

here is how to find the distribution of 𝜹 . The prior distribution 𝑝 (𝜹)
in Eq. (10) introduces potential variability of 𝜹 to the model. Since

𝜹 = 0 represents the normal state, the use of zero-mean Gaussian

makes sense. Other zero-mean distributions may work. In fact, we

modify this prior a bit later, as discussed in Sec. 5.3.

The precision parameter 𝜆 in Eq. (9) describes potential noise

that may have contaminated the data, as illustrated as the grey

band in Fig. 2. As the preciseness of the measurements may vary

from sample to sample, the use of a single 𝜆 value can be risky.

The prior 𝑝 (𝜆) takes care of this aspect. As will be seen later, our

model uses a mixture of Gaussians with different values of 𝜆 in

some sense, which leads to the 𝑡-distribution instead of Gaussian for

the observation model, adding extra capability of handling heavy

noise.

Finally, we make two remarks about the proposed generative

model. First, Bayesian (linear) regression models similar to the

above have been considered in the literature, e.g., [39]. Our model

is fundamentally different from them in that (1) 𝜹 as an explanation

is not linear regression coefficients, and (2) we do not approximate

𝑓 (·) as a liner function. As for other Bayesian regression approaches,
Moreira et al. [27] used the Gaussian process in the active learning

setting, but not for attribution. Second, one might wonder whether

the particular choice of a parametric form might lead to the loss of

generality. Regarding this question, it is critical to understand that

Eq. (9) is about the deviation or the error 𝑓 (𝒙𝑡 ) − 𝑦𝑡 . Although the

variability of 𝑦 over the entire domain obviously does not follow

Gaussian in general, the error is often well-represented by Gaussian

or 𝑡-distribution. This is exactly the same situation Carl Friedrich

Gauss faced when he invented Gaussian-based fitting [4]: Planetary

motions do not follow Gaussian, but the error does.

5.2 Inference approach

Given the generative model above, the task of probabilistic attri-

bution is now turned to that of finding the posterior distribution

of 𝜹 . However, there are two major differences from the standard

Bayesian inference: 1) 𝑓 (𝒙) is a black-box function. Exact infer-

ence is not possible. Approximating 𝑓 (𝒙) with a specific functional

form, such as the linear function, may not always be possible, ei-

ther. 2) Posterior inference generally yields a joint distribution for

𝜹 , denoted by 𝑄 (𝜹). However, this is not what we want since it
does not directly explain the contribution of the individual input
variables. This section explains how we addressed these challenges.
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𝑥𝑘
𝑥𝑘
𝑡

(𝒙𝑡 , 𝑦𝑡)

MAP 
point

(b) non-informative case

𝑦

𝑥𝑘
𝑥𝑘
𝑡

(𝒙𝑡 , 𝑦𝑡) MAP 
point

(a) informative variable

𝑦 𝑦 = 𝑓(𝒙)
𝑞𝑘(𝛿𝑘)

𝛿𝑘
∗

𝑞𝑘(𝛿𝑘)

𝑦 = 𝑓(𝒙)

Figure 2: Illustration of the GPA solution. (a) The MAP esti-

mate 𝛿∗
𝑘
intuitively represents the deviation from the regres-

sion surface at the level of 𝑦𝑡 . (b) If 𝑥𝑘 is barely correlated

with 𝑦, GPA tends to give a broad distribution around the

MAP point, which is 0 almost surely.

5.2.1 Decomposing variable’s contributions. One of the most impor-

tant ideas of our probabilistic attribution framework is to assume a

factorized form of posterior:

𝑄 (𝜹) = 𝑄 (𝛿1, . . . , 𝛿𝑀 ) ≈
∏𝑀

𝑘=1
𝑞𝑘 (𝛿𝑘 ), (12)

so that end-users can directly use 𝑞𝑘 (𝛿𝑘 ) to get insights on the

contribution of the 𝑘-th input variable (see Fig. 2). The factorized

form (12) is reminiscent of what is assumed in the variational Bayes

(VB) algorithm [3], and we can be guided by VB’s general solution

approach. Specifically, we find the unknown distributions {𝑞𝑘 } by
minimizing the KL (Kullback–Leibler) divergence between 𝑄 and∏

𝑘 𝑞𝑘 . The key fact here is that 𝑄 is proportional to the complete

likelihood by Bayes’ rule. Since 𝜆 is an unobserved intermediate

parameter, it can be marginalized. The integration can be performed

analytically, yielding the following form of the likelihood:

𝑄 (𝜹) ∝ 𝑝 (𝜹)
𝑁test∏
𝑡=1

∫ ∞

0

d𝜆 𝑝 (𝑦𝑡 | 𝒙𝑡 , 𝜹, 𝜆)𝑝 (𝜆) (13)

∝ 𝑝 (𝜹)
𝑁test∏
𝑡=1

1

√
𝑏0

{
1 + [𝑦

𝑡 − 𝑓 (𝒙𝑡 + 𝜹)]2
2𝑏0

}−(𝑎0+ 1

2
)
, (14)

where we assumed the collective attribution scenario for generality

but note that 𝑁test can be 1. The marginalization amounts to form-

ing a weighted mixture of Gaussians. The resulting distribution (14)

is the 𝑡-distribution with the degrees of freedom 2𝑎0, the mean

𝑓 (𝒙𝑡 +𝜹), and the scale parameter

√︁
𝑏0/𝑎0, adding extra robustness

to the model. The objective functional for {𝑞𝑘 } is given by∫ (
𝑀∏
𝑘=1

d𝛿𝑘 𝑞𝑘 (𝛿𝑘 )
)

ln

∏𝑀
𝑙=1

𝑞𝑙 (𝛿𝑙 )
𝑄 (𝜹) +

𝑀∑︁
𝑘=1

𝛾𝑘

∫
d𝛿𝑘 𝑞𝑘 (𝛿𝑘 ), (15)

where the first term is the KL divergence and the second term is

to include the normalization condition with 𝛾𝑘 being Lagrange’s

multiplier. Note that the proportional coefficient in Eq. (14) has no

effect here so we do not have to determine it.

By the calculus of variations w.r.t. 𝑞𝑘 , it is straightforward to get

the minimizer as

ln𝑞𝑘 (𝛿𝑘 ) = c. +
∫ ©­«

∏
𝑗≠𝑘

d𝛿 𝑗 𝑞 𝑗 (𝛿 𝑗 )ª®¬ ln𝑄 (𝜹), (16)

Algorithm 2 Generative Perturbation Analysis

Require: 𝑓 (𝒙), Dtest, parameters 𝜂, 𝜈, 𝜅, 𝑎0, {𝑏 (𝒙𝑡 )}.
1: randomly initialize 𝜹 ≈ 0.
2: repeat

3: set 𝒈 = 0
4: for all (𝑦𝑡 , 𝒙𝑡 ) ∈ Dtest do

5: Compute the local gradient
𝜕𝑓 (𝒙𝑡+𝜹 )

𝜕𝜹

6: Update 𝒈 ← 𝒈 + 𝜕𝑓 (𝒙𝑡+𝜹 )
𝜕𝜹

𝑦𝑡−𝑓 (𝒙𝑡+𝜹 )
2𝑏 (𝒙𝑡 )+[𝑦𝑡−𝑓 (𝒙𝑡+𝜹 ) ]2

7: end for

8: 𝒈 ← (1 − 𝜅𝜂)𝜹 + 𝜅 (2𝑎0 + 1)𝒈
9: 𝜹 = sign(𝒈)max {0, |𝒈 | − 𝜂𝜈}
10: until convergence

11: set 𝜹∗ = 𝜹
12: for all 𝑘 do

13: 𝑞𝑘 (𝛿) = 𝑄 (𝛿∗
1
, . . . , 𝛿∗

𝑘−1
, 𝛿, 𝛿∗

𝑘+1, 𝛿, 𝛿
∗
𝑀
)

14: 𝑞𝑘 (·) ← 𝑞𝑘 (·)/
∫

d𝛿 ′𝑞𝑘 (𝛿 ′) with Eq. (18)

15: end for

16: return {𝑞𝑘 (·) | 𝑘 = 1, . . . , 𝑀} and 𝜹∗

where c. is a symbol representing an unimportant constant in gen-

eral. Since both 𝑞𝑘 and 𝑞 𝑗 ( 𝑗 ≠ 𝑘) are unknown, this procedure is

iterative in nature. Also, since 𝑞𝑘 ’s are a functional of the black-box

function 𝑓 (·), analytically performing the integration is not possi-

ble. Although Monte Carlo techniques can be used in theory, they

are not a preferable choice in realistic usage scenarios, where the

end-users actively interact with the attribution tool with different

test points.

5.3 Computing attribution score distribution

Here, we propose a practical solution to address these challenges.

For attribution purposes, we do not necessarily need the posterior

distribution over the entire domain. What we are interested in is

how attribution score is distributed around the most probable value.

Hence, we evaluate the expectation in Eq. (16) through the empirical

distribution of 𝛿 𝑗 ( 𝑗 ≠ 𝑘) with a sample at the maximum posteriori

(MAP) point. In this approach, the variable-wise posterior is given

simply by

𝑞𝑘 (𝛿𝑘 ) ∝ 𝑄 (𝛿∗1 , . . . , 𝛿
∗
𝑘−1

, 𝛿𝑘 , 𝛿
∗
𝑘+1, . . . , 𝛿

∗
𝑀 ), (17)

where 𝜹∗ is the MAP solution 𝜹∗ ≜ arg max𝜹 ln𝑄 (𝜹). Since this
is a one-dimensional (1D) distribution and we know 𝜹 distributes

around zero, the normalization constant can be determined easily.

Numerical integration is one approach. Otherwise, one may treat

𝑞𝑘 (·) as a discrete distribution on a 1D grid. Specifically, we define

1D grid points 𝛿 [1] , . . . , 𝛿 [𝑁g ]
over [−𝛿max, 𝛿max], where 𝑁g is an

arbitrary number of grid points, such as 100, and 𝛿max can be, for

example, 𝛿max ∼ 1.1 max𝑘 |𝛿∗𝑘 |. The distribution 𝑞𝑘 (·) on the grid

is obtained from its unnormalized version 𝑞𝑘 (·) by

𝑞𝑘 (𝛿 [𝑖 ] ) ≈
1∑𝑁g

𝑖=1
𝑞𝑘 (𝛿 [𝑖 ] )

𝑞𝑘 (𝛿 [𝑖 ] ), for 𝑖 = 1, . . . , 𝑁g . (18)

The inference procedure has now become a two-step process:

MAP estimation and construction of {𝑞𝑘 } with Eqs. (17)-(18). The
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former problem is written as

𝜹∗ = arg min

𝜹
{𝐽 (𝜹) + 𝜂𝜈 ∥𝜹 ∥1} , (19)

𝐽 (𝜹) ≜ 𝜂

2

∥𝜹 ∥2
2
+ ln

{
1 + [𝑦

𝑡 − 𝑓 (𝒙𝑡 + 𝜹)]2
2𝑏 (𝒙𝑡 )

} 2𝑎
0
+1

2

, (20)

where we have added an extra ℓ1 term for better interpretability

through sparsity. Here, 𝜈 is the strength of the ℓ1 regularization

relative to that of ℓ2. With this modification, we need to use

𝑝 (𝜹) ∝ exp

{
−𝜂

2

∥𝜹 ∥2
2
− 𝜂𝜈 ∥𝜹 ∥1

}
(21)

in Eqs. (14) and (17). We have also included in Eq. (20) potential

dependency of 𝑏0 on 𝒙𝑡 and denoted it as 𝑏 (𝒙𝑡 ). Corresponding to

𝑎(Dtest) in Eq. (2), if we wish to find the attribution distribution

for a collection of test samples, 𝐽 (𝜹) should be replaced with

𝐽 (𝜹) = 𝜂

2

∥𝜹 ∥2
2
+
𝑁test∑︁
𝑡=1

ln

{
1 + [𝑦

𝑡 − 𝑓 (𝒙𝑡 + 𝜹)]2
2𝑏 (𝒙𝑡 )

} 2𝑎
0
+1

2

. (22)

We call the proposed probabilistic attribution framework the gen-

erative perturbation analysis (GPA) hereafter. As illustrated in

Fig. 2, the GPA distribution {𝑞𝑘 } is useful to have in order to evalu-

ate the general informativeness of the input variables.

5.3.1 SolvingMAP problem. One of the standard solution approaches
to the optimization problem of the type Eq. (19) is proximal gradient

descent [31], although the unavailability of closed-form expression

of the gradient of 𝑓 (·) makes the procedure a bit complicated. If a

numerical estimation method for ∇𝑓 (𝒙𝑡 + 𝜹) is available, Eq. (19)
can be reduced to an iterative lasso regression problem:

𝜹 ← arg min

𝜹

{
1

2𝜅
∥𝜹−𝜹 ′+𝜅∇𝐽 (𝜹 ′)∥2

2
+𝜂𝜈 ∥𝜹 ∥1

}
, (23)

where𝜅 is a constant corresponding to the learning rate and 𝜹 ′ is the
solution of the previous iteration round. By setting the subgradient

zero, the solution of this problem is readily obtained as

𝛿𝑖 = sign(𝑔𝑖 )max {0, |𝑔𝑖 | − 𝜂𝜈} , (24)

where we defined 𝒈 ≜ 𝜹 ′ − 𝜅∇𝐽 (𝜹 ′). Upon convergence, we set

𝜹∗ = 𝜹 . See lines 2-11 in Algorithm 2.

5.3.2 Algorithm summary. Algorithm 2 summarizes the entire al-

gorithm of GPA. Whenever possible, it is recommended to stan-

dardize 𝒙 somehow so that it distributes around zero with unit

variance for each variable. For standardized data, the ℓ2 strength

𝜂 can be a value of O(1), such as 0.1, which can also be a reason-

able starting point for 𝜅. The ℓ1 strength should be in the range

0 < 𝜈 ≤ 1. We fixed 𝜈 = 0.5 in our experiment. As 2𝑎0 has the

interpretation of degrees of freedom, one reasonable starting point

is 2𝑎0 ∼ 𝑁test + 1. As described in Appendix D, 𝑏 (𝒙𝑡 ) can be chosen

as a constant 𝑏0 ∼ 𝑎0𝜎
2

𝑦𝑓
/𝑐𝑏 , where 𝜎2

𝑦𝑓
is an estimate of the vari-

ance of 𝑦 − 𝑓 (𝒙), or the maximizer of the marginalized likelihood,

and 𝑐𝑏 is the number of virtual samples, which can be O(10). As
summarized in Table 2, we used 𝑐𝑏 = 1 or 10, and also 2𝑎0 = 11 in

our experiments to simulate the variability of realistic cases.

It is easy to see that the complexity of the algorithm is𝑂 (𝑀𝑁test)
per iteration round. Note that 𝑁test = 1 is the most common choice

(i.e., local explanation) and the algorithm does not use any training

data. Hence, typical scalability analysis about the data set size is

Table 2: Summary of the datasets and parameters used.

𝑁train 𝑁test 𝑀 𝑓 (𝒙 ) 𝜅 𝑐
b

𝜂

2Dsinusoidal ∞ 1 2 analytic - - -

Diabetes 442 1 10 DNN 0.08 10 0.4

Boston 506 1 13 RF 0.08 10 0.1

California 20 640 3 8 GBT 0.1/𝑁test 1 0.5𝑁test

𝑥1

(
1

2
, 0, +1)

(
1
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Figure 3: 2Dsinusoidal: Surface plot and the 𝑥2 = 0 slice. The

points A, B, and C are at 𝑦𝑡 = 1, −1, and 0, respectively, while

they are at the same 𝒙𝑡 = (1/2, 0).

irrelevant. The total computational time depends almost entirely

on very low-level implementation details, such as how efficient

the numerical gradient estimation routine is, how the black-box

model 𝑓 (·) is implemented, and to what extent the Python code is

vectorized. Their detailed analysis is beyond the scope of the paper.

6 EXPERIMENTS

This section presents empirical evaluation of the proposed anom-

aly attribution framework
1
. The goals of this evaluation are to 1)

provide a clear picture of what deviation-sensitivity of an attri-

bution method buys us; 2) demonstrate GPA’s unique capability

of providing the probability distribution of attribution scores; 3)

quantitatively analyze the consistency and inconsistency among

different attribution methods.

6.1 Datasets and baselines

Based on the datasets summarized in Table 2, we compared GPA

with seven baselines: Six non-distributional attribution methods,

LIME (Sec. 4.1.1), (E)IG (Sec. 4.1.2), SV (Sec. 4.1.3), LC [20], and the𝑍 -

score (e.g., [5]), as well as one distributional method, BayLIME [49].

For anomaly attribution, LIME, SV, IG, and EIG are applied to the

deviation 𝑓 (𝒙) − 𝑦 rather than 𝑓 (𝒙). The 𝑍 -score is a standard

univariate outlier detection metric in the unsupervised setting, and

is defined as 𝑍𝑖 ≜ (𝑥𝑡𝑖 −𝑚𝑖 )/𝜎𝑖 for the 𝑖-th variable, where𝑚𝑖 , 𝜎𝑖
are the mean and the standard deviation of 𝑥𝑖 , respectively. In SV,

we used the same sampling scheme as that proposed in [42] with

the number of configurations limited to 100. In IG and EIG, we used

the trapezoidal rule with 100 equally-spaced intervals to perform

the integration w.r.t. 𝛼 . For IG, EIG, LC, and GPA, we used the same

gradient estimation algorithm described in Appendix C.

To compute SV, EIG, and the 𝑍 -score, we used the empirical

distribution of the training data to approximate 𝑃 (𝒙). Note that this
is actually not possible to do in our doubly black-box setting. We are

including SV, EIG, and the 𝑍 -score here for comparison purposes

nonetheless.

1
Python implementation is available at https://github.com/Idesan/gpa.

https://github.com/Idesan/gpa
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Figure 4: 2Dsinusoidal: Comparison of normalized attribu-

tion scores at three test points (A, B and C in Fig. 3).
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Figure 5: Scatter plot of selected input variables vs. 𝑦. Left:

Diabetes. Right: CaliforniaHousing. The red squares high-

light the detected top outliers.

6.2 Deviation-sensitivity

6.2.1 2Dsinusoidal. The first empirical evaluation uses a synthetic

dataset named 2Dsinusoidal, which is a newly proposed attribu-

tion benchmark model, defined by a 2-variate sinusoidal function

𝑓 (𝒙) = 2 cos(𝜋𝑥1) cos(𝜋𝑥2) . (25)

One remarkable feature of this model is that it is possible to calculate
closed-form attribution scores. See Appendix A for the details.

Suppose we have a test point at 𝒙𝑡 = (1/2, 0) with three different

𝑦𝑡 values, A (𝑦𝑡 = 1), B (𝑦𝑡 = −1), and C (𝑦𝑡 = 0), as illustrated in

Fig. 3. In this case, SV and LIME attribution scores are (0, 0) and
(−2𝜋, 0), respectively. IG’s scores are (−2, 0) and (−2/3, 8/3) if we
choose 𝒙0 = (0, 0) and (0, 1), respectively. These do not depend

on 𝑦𝑡 due to the deviation-agnostic property, in contrast to GPA,

which gives 𝛿∗
1
= (1/𝜋) arccos

(
𝑦𝑡/2

)
− 𝑥𝑡

1
and 𝛿∗

2
= 0.

Figure 4 visualizes the attribution scores with what we call the

‘litmus plot,’ where larger values get darker colors (0 gets white)
and negative/positive values get blue/red colors. Due to space limi-

tations, we omitted LC, which results in the same solution as that

of GPA, and the 𝑍 -score. For GPA, the scores are normalized by

dividing by max𝑘 |𝛿𝑘 | for each test point. Similar normalization

was done for the baselines with the convention
0

0
= 0.

In this example, A and B are outliers due to a shift in the 𝑥1

direction, while C is normal in terms of deviation. Hence, an ideal

attribution would be that 𝑥1 alone gets a strong signal only for A

and B. GPA precisely reproduces this, but all the baselines do not:

They gave the same score for A, B, and C, as a consequence of the

deviation-agnostic property. The figure also shows that IG’s scores

sensitively depend on the choice of 𝒙0
, making IG trickier to use

for the end-users. SV always satisfies SV1 = SV2 regardless of 𝒙𝑡 in
this case, and does not provide any clue for input attribution. This

is a manifestation of the loss of locality in SV discussed in Sec. 4.2.3.

6.2.2 Diabetes. To test the deviation sensitivity of GPA on real-

world data, we used Diabetes [7], which has a real-valued target

age
GPA LC LIME IG EIG SV Z

sex
bmi
bp
s1
s2
s3
s4
s5

1 0 1

s6
1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1

Figure 6: Diabetes: Comparison of normalized attribution

scores in the litmus plot for the top outlier detected.

variable (‘progression’) and𝑀 = 10 predictors including the body-

mass index (‘bmi’). For this dataset, we held out 20% of the samples

and trained a deep neural network (DNN) on the rest as the black-

box model 𝑓 (·). We identified the top outlier using Eq. (1), which is

highlighted in Fig 5.

Figure 6 compares attribution scores for the top outlier. We set

𝒙0 = 0 for IG. All the attribution methods identify ‘bmi’ and ‘s5’

as the top contributors. For both, GPA and LC get a large negative

score since a smaller value is more typical for such a low 𝑦𝑡 value,

as shown in the scatter plot in Fig. 5. GPA gave 𝛿
bmi

= −0.81 and

𝛿s5 = −0.55. Note that these values have actual meaning rather

than just the magnitude of responsibility: A big negative in 𝛿
bmi

means that the BMI is too high for such a low 𝑦 level. In other

words, they would have looked normal if they were a little skinnier.

Explainability of this kind is particularly useful in practice as the

score provides actionable insights about how the status quo could

be changed for the better. The alternative methods do not have

such ability. LIME is positive for bmi because the slope is positive

at the 𝒙𝑡 , regardless of the 𝑦𝑡 value. Similarly, IG, EIG, and SV gave

positive values for bmi because 𝑓 (𝒙𝑡 ) is higher than the mean of 𝑦,

regardless of the specific value of 𝑦𝑡 .

6.3 Distribution analysis

6.3.1 Comparison with BayLIME. Now let us discuss how GPA

provides useful insights into the uncertainty of the attribution

score. To the best of our knowledge, BayLIME [39, 49] is the only

method in the literature applicable to our setting.

We used the BostonHousing data [2], where the task is to predict
𝑦, the median home price (‘MEDV’) of the districts in Boston, with

𝒙 , the input vector of size 𝑀 = 13 including such features as the

percentage of the lower status of the population (‘LSTAT’) and the

average number of rooms (‘RM’)
2
. For this dataset, we held out 20%

of the samples as Dtest and trained the random forest (RF) [17] on

the rest as the black-box model 𝑓 (·). We identified the top outlier

using Eq. (1) and computed the score distribution for the top outlier.

The estimated distributions are shown in Fig. 7. As clearly seen

from the figure, BayLIME gives the same curve for all the variables

apart from the mean locations. In fact, the variance is given as a

2
We excluded a variable named ‘B’ from attribution for ethical concerns [34].
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Figure 7: Estimated score distribution. Left: BostonHousing.
Right: CaliforniaHousing for collective attribution.

constant 1/(𝜂 + 𝜆𝑁s), where 𝑁s is the number of virtual samples

generated for estimating the regression coefficients and is 10 in our

case (See Appendix B). In contrast, GPA provides variable-specific

distributions. As illustrated in Fig. 2, less informative variables tend

to produce a flatter distribution in GPA. In this case, we immediately

see that RM and LSTAT are two dominating variables. Such an

insight is not obtainable from BayLIME. It is interesting to see that

the score distributions given by GPA tend to be piece-wise constant,

reflecting the fact that RF is a collection of decision stumps.

6.3.2 Collective attribution. To show the unique capability of GPA

for collective attribution, we used the CaliforniaHousing [30]

dataset. The task is to predict the median house value of small

geographical segments using predictor variables such the longitude

and latitude. We held out 20% of the samples and trained gradient

boosted trees (GBT) [10] on the rest. In this case, we identified

three top outliers as shown in Fig. 5. The question is whether those

outliers have common characteristics in their outlier-ness.

Figure 7 shows the computed distributions, where we omitted

BayLIME due to its triviality. Very interestingly, ‘Latitude’ has a

very sharp peak at a negative value. This indicates that the very

high ‘MedHouseVal’ in Fig. 5 stands out in that latitude and they

would look more common if they existed in a southern location.

6.4 Consistency analysis

We have compared GPA with seven alternative methods in a rather

qualitative fashion so far. One important question in practice is

how those methods are consistent or inconsistent among them over-

all. To answer this question, we identified five top outliers in the

three real-world datasets (BostonHousing, CaliforniaHousing,
Diabetes), and computed how their attribution scores are con-

sistent with those of GPA in terms of four metrics: Kendall’s 𝜏 ,

Spearman’s 𝜌 , the sign match ratio (SMR), and the hit ratio at 25%

(h25). See Appendix E for the detail.

The result is summarized in Table 3. We omitted EIG because of

Theorem 4. LC achieves very high consistency with GPA, although

it lacks a built-in mechanism for UQ. This is understandable since it

can be viewed as a point-estimation version of GPA in some sense.

Table 3: Result of consistency analysis. The mean and the

standard deviation are shown in each cell, where 1 represents

the highest consistency with GPA’s MAP value.

LC LIME IG SV 𝑍 -score

Bos.

𝜏 0.70 ± 0.14 0.25 ± 0.30 0.61 ± 0.11 0.43 ± 0.10 0.17 ± 0.30

𝜌 0.83 ± 0.09 0.32 ± 0.38 0.74 ± 0.08 0.57 ± 0.14 0.24 ± 0.35

SMR 0.92 ± 0.11 0.71 ± 0.11 0.65 ± 0.12 0.69 ± 0.14 0.62 ± 0.17

h25 0.80 ± 0.18 0.27 ± 0.28 0.73 ± 0.28 0.67 ± 0.00 0.20 ± 0.30

Cal.

𝜏 0.82 ± 0.15 0.67 ± 0.13 0.64 ± 0.07 0.73 ± 0.10 0.04 ± 0.20

𝜌 0.91 ± 0.11 0.76 ± 0.11 0.79 ± 0.06 0.83 ± 0.10 0.07 ± 0.27

SMR 0.97 ± 0.06 0.95 ± 0.11 0.68 ± 0.07 0.68 ± 0.11 0.70 ± 0.14

h25 0.80 ± 0.27 0.90 ± 0.22 1.00 ± 0.00 1.00 ± 0.00 0.30 ± 0.27

Dia.

𝜏 0.94 ± 0.06 0.31 ± 0.19 0.72 ± 0.08 0.58 ± 0.10 0.15 ± 0.15

𝜌 0.98 ± 0.03 0.41 ± 0.21 0.88 ± 0.04 0.75 ± 0.10 0.22 ± 0.20

SMR 1.00 ± 0.00 0.62 ± 0.11 0.38 ± 0.08 0.62 ± 0.22 0.60 ± 0.10

h25 1.00 ± 0.00 0.60 ± 0.22 0.90 ± 0.22 0.80 ± 0.27 0.30 ± 0.45

As expected, h25 generally has high scores, apart from the 𝑍 -score.

This suggests that those attribution methods are a useful tool for

selecting important features. Even in the other metrics, including

the SMR, they produce reasonably consistent attributions in some

cases. However, in some 20-30% of cases they are not necessarily

consistent, which is a natural consequence of the fact that GPA is

deviation-sensitive but the others are not.

6.5 Practical utility of the GPA framework

We remark further on the practical utility of the proposed frame-

work, using the BostonHousing data as an example. Recall that the

top detected outlier has two variables with dominating attribution

scores. Depending on one’s role, different insights may be obtained

from this analysis: From the end user’s perspective, the outlier in

Fig. 7 may point to a bargain since this house (district) has unusually

more rooms and much fewer low-income neighbors than expected

for the price range; For a modeler who is interested in debugging

the model, the two dominating attribution scores may hint that

the model may be failing to capture the relationship between the

housing price and the variables RM and LSTAT, prompting the mod-

eler to revise (e.g. contextualize) how these variables are defined.

While the attribution scores may not decisively pinpoint the exact

interpretation, the rich and accurate information given by GPA

provides valuable clues in either usage scenario.

7 CONCLUSIONS

Wehave proposed GPA, a novel generative approach to probabilistic

attribution of black-box regressionmodels. The key idea is to reduce

the attribution task to a statistical parameter estimation problem.

This can be done by viewing the perturbation 𝜹 as a model pa-

rameter of the generative process for the observed variables (𝒙, 𝑦),
where the posterior distribution gives the distribution of the at-

tribution score. We proposed a variational inference algorithm to

obtain variable-wise distributions.

We have also shown that the existing input attribution meth-

ods, namely integrated gradient IG), local linear surrogate mod-

eling (LIME), and Shapley values (SV), are inherently deviation-

agnostic and, thus, are not designed to be a viable solution for

anomaly attribution. Unlike these methods, GPA is capable of pro-

viding directly interpretable insights in a deviation-sensitive and

uncertainty-aware manner.
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APPENDIX

A CLOSED-FORM SOLUTIONS FOR 2-VARIATE

SINUSOIDAL MODEL

This section lists analytic expressions of a few attribution methods

on the 2Dsinusoidal model 𝑓 (𝑥1, 𝑥2) = 2 cos(𝜋𝑥1) cos(𝜋𝑥2).

A.1 LIME

Since LIME score is an estimator of the gradient w.r.t. the input

variables 𝑥1, 𝑥2 in the limit of 𝜈 → 0+, we have

LIME
0 (𝒙𝑡 , 𝑦𝑡 ) =

(
−2𝜋 sin(𝜋𝑥1) cos(𝜋𝑥2)
−2𝜋 cos(𝜋𝑥1) sin(𝜋𝑥2)

)
(A.1)

for ∀(𝒙𝑡 , 𝑦𝑡 ), which obviously does not depend on 𝑦𝑡 . If we choose

𝒙𝑡 = (1/2, 0)⊤, then LIME
0 = (−2𝜋, 0)⊤.

A.2 GPA

In GPA, the 𝐽 function is given by

𝐽 (𝜹) ≜ 𝜂

2

∥𝜹 ∥2
2
+ ln

{
1 + [𝑦

𝑡 − 𝑓 (𝒙𝑡 + 𝜹)]2
2𝑏 (𝒙𝑡 )

} 2𝑎
0
+1

2

With Δ𝑡
𝜹
≜ 𝑦𝑡 − 𝑓 (𝒙𝑡 + 𝜹), the gradient is computed as

𝜕𝐽

𝜕𝜹
= 𝜂𝜹 −

(2𝑎0 + 1)Δ𝑡
𝜹

2𝑏 (𝒙𝑡 ) + (Δ𝑡
𝜹
)2

𝜕𝑓 (𝒙 + 𝜹)
𝜕𝜹

,

where

𝜕𝑓 (𝒙 + 𝜹)
𝜕𝜹

=

(
−2𝜋 sin(𝜋 (𝑥𝑡

1
+ 𝛿1)) cos(𝜋 (𝑥𝑡

2
+ 𝛿2))

−2𝜋 cos(𝜋 (𝑥𝑡
1
+ 𝛿1)) sin(𝜋 (𝑥𝑡

2
+ 𝛿2))

)
.

Let us assume 𝜈 → 0+ and −2 < 𝑦𝑡 < 2. If we assume 𝑥𝑡
2
= 0,

then 𝛿∗
2
= 0 should hold as long as 𝜹 is initialized as 𝜹 ≈ 0 and

𝜂𝜈 > 0 regardless of the sign of Δ𝑡
𝜹
. Given this partial solution, the

condition of optimality for 𝛿1 is given by

𝜂𝛿1 + (2𝑎0 + 1)
2𝜋Δ𝑡

𝜹
sin(𝜋 (𝑥𝑡

1
+ 𝛿1))

2𝑏 (𝒙𝑡 ) + (Δ𝑡
𝜹
)2

= 0.

If 𝑥𝑡
1

> 0 and 𝜂 → 0+, this equation yields a condition 𝑦𝑡 −
2 cos(𝜋 (𝑥1 + 𝛿1)) ≈ 0, leading to the solution

𝛿∗
1
=

1

𝜋
arccos

𝑦𝑡

2

− 𝑥𝑡
1
. (A.2)

If we further choose 𝑥𝑡
1
= 1/2 (i.e., 𝒙𝑡 = (1/2, 0) again), we have

𝜹∗ = (− 1

6
, 0)⊤, (0, 0)⊤, ( 1

6
, 0)⊤ for 𝑦𝑡 = 1, 0, −1, respectively.

A.3 LC

In LC, the 𝐽 function in our notation is given by

𝐽 (𝜹) = 1

2

𝜂∥𝜹 ∥2
2
+ 1

2

𝜆[𝑦𝑡 − 𝑓 (𝒙𝑡 + 𝜹)]2 . (A.3)

With Δ𝑡
𝜹
≜ 𝑦𝑡 − 𝑓 (𝒙𝑡 + 𝜹), the gradient is computed as

𝜕𝐽

𝜕𝜹
= 𝜂𝜹 − 𝜆Δ𝑡𝜹

(
−2𝜋 sin(𝜋 (𝑥𝑡

1
+ 𝛿1)) cos(𝜋 (𝑥𝑡

2
+ 𝛿2))

−2𝜋 cos(𝜋 (𝑥𝑡
1
+ 𝛿1)) sin(𝜋 (𝑥𝑡

2
+ 𝛿2))

)
.

Let us assume 𝜈 → 0+ and −2 < 𝑦𝑡 < 2. If we assume 𝑥𝑡
2
= 0,

again, 𝛿∗
2
= 0 should hold as long as 𝜹 is initialized as 𝜹 ≈ 0 and

𝜂𝜈 > 0 regardless of the sign of Δ𝑡
𝜹
. Given this partial solution, the

condition of optimality for 𝛿1 is written as

𝜂𝛿1 + 𝜆[𝑦𝑡 − 2 cos(𝜋 (𝑥1 + 𝛿1))]2𝜋 sin(𝜋 (𝑥𝑡
1
+ 𝛿1)) = 0. (A.4)

If 𝑥𝑡
1
> 0 and𝜂 → 0+, we have a condition𝑦𝑡−2 cos(𝜋 (𝑥1+𝛿1)) ≈ 0,

which is the same as the MAP equation of GPA. Hence, LC gets the

same attribution score as GPA’s MAP value in this particular case.

A.4 Integrated Gradient

The 2Dsinusoidalmodel allows calculating IG analytically for any

(𝒙𝑡 , 𝒙0) based on the definition (3) as

IG𝑖 (𝒙𝑡 , 𝑦𝑡 | 𝒙0, 𝑦0) = 𝑑𝑖
[
𝐺𝑡 −𝐺0 − (−1)𝑖 (𝐻𝑡 − 𝐻0)

]
(A.5)

with 𝑖 being 1 or 2 and

𝐺𝑘 ≜
cos𝜋 (𝑥𝑘

1
+ 𝑥𝑘

2
)

𝑑1 + 𝑑2

, 𝐻𝑘 ≜
cos𝜋 (𝑥𝑘

1
− 𝑥𝑘

2
)

𝑑1 − 𝑑2

, (A.6)

where 𝑑1 ≜ 𝑥𝑡
1
− 𝑥0

1
, 𝑑2 ≜ 𝑥𝑡

2
− 𝑥0

2
and 𝑘 is either 𝑡 or 0. Using

elementary trigonometric formulas, one can verify the sum rule

IG1 + IG2 = 𝑓 (𝒙𝑡 ) − 𝑓 (𝒙0). For 𝒙𝑡 = (1/2, 0)⊤, the IG values are

IG(𝒙𝑡 | (0, 0)⊤) = (−2, 0)⊤, IG(𝒙𝑡 | (0, 1)⊤) = (− 2

3
, 8

3
)⊤,

where we have omitted redundant 𝑦𝑡 , 𝑦0
from the arguments.

A.5 Shapley Value

The expected Shapley value depends on the true distribution 𝑃 (𝒙).
If 𝑃 (𝒙) is the uniform distribution over [−𝑚,𝑚] with𝑚 being an

integer, the expectation of 𝑓 is zero in 2Dsinusoidal. The same

applies to the conditional distributions. As a result, we have

SV(𝒙𝑡 ) = 1

2

(𝑓 (𝒙𝑡 ), 𝑓 (𝒙𝑡 ))⊤ (A.7)

for ∀𝒙𝑡 under the assumed uniform distribution.

B ATTRIBUTION SCORE DISTRIBUTION

WITH BAYESIAN LIME

Equation (7) of BayLIME’s paper [49] provides the posterior distri-

bution of the regression coefficients. In our notation, the posterior

covariance is given by

𝚺
−1 = 𝜂I𝑀 + 𝜆

𝑁𝑠∑︁
𝑛=1

𝝃𝑛𝝃
⊤
𝑛 , (B.8)

where 𝝃𝑛 is the 𝑛-th sample generated from N(𝝃 | 0, I𝑀 ), accord-
ing to the authors. The paragraph after their Eq. (11) says that∑𝑁𝑠

𝑛=1
𝝃𝑛𝝃⊤𝑛 ≈ 𝑁𝑠 I𝑀 holds. Hence, 𝚺 can be computed as

𝚺 = {𝜂I𝑀 + 𝜆𝑁𝑠 I𝑀 }−1 = (𝜂 + 𝜆𝑁𝑠 )−1I𝑀 (B.9)

and the posterior distribution of the attribution score 𝜷 is given by

𝑄BayLIME ≜ N(𝜷 | 𝜷BayLIME, 𝚺), where 𝜷BayLIME
is the posterior

mean. Since 𝚺 is diagonal, 𝛽𝑖s are statistically independent. The

distribution of the attribution score of the 𝑘-th variable is given by

𝑞
BayLIME

𝑘
(𝛽𝑘 ) = N(𝛽𝑘 | 𝛽

BayLIME

𝑘
, (𝜂 + 𝜆𝑁𝑠 )−1) . (B.10)

This is a one-dimensional distribution with the same variance for

all the 𝑘s. Since the model evaluates the variability of the generated
samples based on an assumed distribution, the variance does not

have any explicit dependency on the black-box function 𝑓 (·).
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C ESTIMATING THE GRADIENT OF

BLACK-BOX FUNCTION

To find the MAP solution for GPA, we need to numerically estimate

the gradient of the black-box function 𝑓 (·). To handle the potential
non-differentiability of 𝑓 , we define the gradient as the local mean

of the slope function [𝑓 (𝒙𝛿 +ℎ𝒆𝑖 ) − 𝑓 (𝒙𝛿 )]/ℎ, where 𝒙𝛿 ≜ 𝒙𝑡 +𝜹 , ℎ
is a small random perturbation, and 𝒆𝑖 is a unit vector which takes 1

in the 𝑖-th entry and 0 otherwise. The local mean can be estimated

by numerically evaluating

𝜕𝑓 (𝒙𝛿 )
𝜕𝛿𝑖

=

∫ ∞

−∞
dℎ 𝑝 (ℎ) 𝑓 (𝒙𝛿 + ℎ𝒆𝑖 ) − 𝑓 (𝒙𝛿 )

ℎ
, (C.11)

where 𝑝 (ℎ) is a local distribution for ℎ around 𝒙𝛿 . One reasonable
choice is 𝑝 (ℎ) = N(ℎ | 0, 𝜂2

1
) with 𝜂1 being the standard deviation

of the perturbations. For numerical stability, we used 𝜂1 = 1 in our

experiments, where the input variables have been standardized. The

number of Monte Carlo samples was set to 10, which was confirmed

to provide sufficient convergence in our experiments.

D PARAMETER TUNING APPROACH

GPA’s distribution can be used for verifying whether the computed

MAP value has reached a satisfactory local maximum. In our exper-

iments, we started with a default set of parameters: 𝜅 = 0.1/𝑁test,

𝜂 = 0.1𝑁test, and 𝑐𝑏 = 10. If any of the GPA distributions looked

inconsistent with the MAP value, we gradually decreased 𝑐𝑏 down

to 1 and increased 𝜂 up to 1. We kept 𝜈 fixed at 0.5, which turned

out to achieve a sparsity level comparable to that of LIME.

We discuss how to initialize 𝑎0, 𝑏0 in the gamma prior below.

D.1 Gamma hyper-parameters: shape

Since 2𝑎0 has the interpretation of the degree of freedom of the

𝑡-distribution, it makes sense to use

𝑎0 = (𝑁̃ + 1)/2. (D.12)

Here, 𝑁̃ denotes the sample size and can be equated to 𝑁test. We

have added 1 so 𝑎0 = 1 when 𝑁test = 1. Otherwise, it can be

interpreted as the virtual sample size, which can be a measure of the

confidence level. Since UQ generally boils down to an ill-posed task

that estimates uncertainty somehow when many samples are not

available, 𝑁̃ can be viewed as a controllable parameter to simulate

what would be seen when there were abundant samples. In such a

case, 𝑁̃ could be a value like 1 ≤ 𝑁̃ ≲ 10.

D.2 Gamma hyper-parameters: rate

Given 𝑎0, the other parameter 𝑏0 can be estimated by maximizing

the log likelihood. For Δ𝑛 ≜ 𝑦 (𝑛) − 𝑓 (𝒙 (𝑛) ), we solve

max

𝑏

𝑁test∑︁
𝑛=1;𝑛≠𝑡

𝑤𝑛 (𝒙𝑡 )
{
c. − 1

2

ln𝑏 −
(
𝑎0 +

1

2

)
ln

1

𝑏

(
𝑏 + Δ2

𝑛

2

)}
= max

𝑏

𝑁test∑︁
𝑛=1;𝑛≠𝑡

𝑤𝑛 (𝒙𝑡 )
{
c. + 𝑎 ln𝑏 −

(
𝑎0 +

1

2

)
ln

(
𝑏 + Δ2

𝑛

2

)}
to obtain an iterative formula

1

𝑏 (𝒙𝑡 ) ←
2𝑎0 + 1

𝑎0

𝑁test∑︁
𝑛=1;𝑛≠𝑡

𝑤̃𝑛 (𝒙𝑡 )
2𝑏 (𝒙𝑡 ) + [𝑦 (𝑛) − 𝑓 (𝒙 (𝑛) )]2

, (D.13)

where 𝑤̃𝑛 ≜
𝑤𝑛∑
𝑚 𝑤𝑚

. For the kernel function, we can use, e.g.,

𝑤𝑛 (𝒙𝑡 ) = 𝑤0 + exp

(
− ∥𝒙

(𝑛) − 𝒙𝑡 ∥2

2𝜂2

0

)
. (D.14)

We need an initial estimate for 𝑏0. One reasonable choice is ob-

tained by replacing [𝑦 (𝑛) − 𝑓 (𝒙 (𝑛) )]2 with its average 𝜎2

𝑦𝑓
, yielding

𝑏0 ≈ 𝑎0𝜎
2

𝑦𝑓
, where 𝜎2

𝑦𝑓
≜

1

𝑁test

𝑁test∑︁
𝑡=1

[𝑦𝑡 − 𝑓 (𝒙𝑡 )]2 . (D.15)

Recall that the derived 𝑡-distribution has the scale parameter

√︁
𝑏0/𝑎0.

As the scale parameter corresponds to the standard deviation, we

see that the above relationship 𝑏0/𝑎0 ∼ 𝜎2

𝑦𝑓
is consistent with it.

Equation (D.15) can be also used as a constant approximation for

𝑏 (𝒙𝑡 ). However, for evaluating the probability density function of 𝜹 ,
it tends to give a bit too large value. This is understandable because

if, e.g., 𝑁test = 1, a majority of the probability mass is from the prior,

giving a dull peak around zero. To reproduce a realistic distribution,

we need to ‘simulate’ the situation where there are a reasonable

number of test samples. This can be done by choosing a smaller

𝑏0/𝑎0 because the precision (the reciprocal of the variance) linearly

increases as a function of the sample size in Bayesian estimation.

Hence, when estimating the distribution in GPA, we can include a

correction factor 𝑐𝑏 as

𝑏0 ∼ 𝑎0𝜎
2

𝑦𝑓
/𝑐𝑏 . (D.16)

Intuitively, 𝑐𝑏 is interpreted as the number of virtual parameters.

Typically, 𝑐𝑏 ∼ 10 gives a reasonable distribution but it should be

viewed as a free parameter that can be tuned according to each

use-case.

E COMPARING ATTRIBUTION SCORES

We computed the following four metrics to evaluate the consis-

tency among different attribution methods. The first and second

metrics are Kendall’s 𝜏 and Spearman’s 𝜌 , calculated for two abso-
lute attribution score vectors. They take a value of 1 if the orders

are the same regardless of their values. The third metric is what

we call the sign match ratio (SMR), which takes on 1 when all the

signs are consistent between corresponding vector elements. When

comparing an attribution score vector 𝒖 against a reference score

vector 𝒓 , SMR is defined as

(SMR) ≜ 1 − 1

𝑀

𝑀∑︁
𝑖=1

I (sign(𝑟𝑖 ) sign(𝑢𝑖 ) = −1) , (E.17)

where I(·) is the indicator function that takes on 1 when the argu-

ment is true, 0 otherwise. We define sign(0) = 0 in this case. Note

that this favors sparse attribution scores: If 𝒓 = 0, then the score is

always 1 regardless of 𝒖. Finally, the fourth metric is what we call

hit25, which gives 1 when the top 25% of the absolute entries per-

fectly match between 𝒓 and 𝒖, and 0 if none of the top 25% members

of 𝒓 is included in that of 𝒖. As hit25 depends on neither the sign

nor the rank, it quantifies simply the match of top contributors.
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