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= \What is the new idea?

" |llustrative examples




“Anomaly attribution” is an important topic in XAl (explainable Al)

research.

Given:

= Black-box regression model y = f(x) and
a (set of) test sample (x%, y%)
o No access to the model beyond API
o No access to the training data

Why did |
Explain: get this?
= The deviation f(xt) — y*t
" by computing the attribution score

(responsibility score) for each of the input
variables x.
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“Anomaly attribution” is an important topic in XAl (explainable Al)

research.

New capabilities that
GPA has enabled

GPA = generative perturbation
analysis (proposed method)

deviation-

sensitive

probabilistic

input variables

|

Y /

3} _/4\ deviation {

y = f(x)

(x5, y")

-1.0 0.3 0o 0.5 1.0

attribution score (responsibility)

>xl

(one of the input variables)



Agenda

" What is the task, “Anomaly Attribution”?

»" What’s wrong with the existing attribution methods?

= \What is the new idea?

" |llustrative examples




LIME, Shapley values (SV), and integrated gradient (I1G) are three
major existing black-box attribution methods.

= LIME, SV, IG have the same in/output | |
o In: black-box y = f(x) and test sample. e m e an?mzz Ous sample
o Out: attribution score for each variable | training data ! (x5 y%)

I (unavailable) 1 attribution score

- test data  for (xtr J’t)

= Why bother to develop a new method? _\! i, ~
black-box model %1
Thgyf‘:\re They can’t | Yy = f(m)
deviation- compute score’s 06

agnostic. uncertainty \_ J




LIME, SV, and IG are to explain a black-box function itself locally.

= LIME = local gradient at xt
o Gradient is numerically estimated via sampling.

= |G = increment from a reference point x°
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" EIG = expected IG

o Computed by marginalizing x°

x4 (xt—20)a

= SV = (something mysterious)
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Can they be used to explain deviations? — No.
Summary of theoretical results.

= Result 1: LIME, SV, IG, and EIG are deviation-agnostic

o This is obvious from the original definition.

v' They explain f(x) locally at x = x¢, independently y.
o The conclusion still holds even when the target function is f (x) — y rather than f(x).

" Result 2: SV is equivalent to EIG up to the second order of power expansion.
SVZ (azt, yt) ~ EIGz (a:t, yt)

= Result 3: LIME is equivalent to the derivative of IG and EIG

8EIGZ (il?t, yt)
(933@'

LIME; (2!, y') =
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Given a test point (x%, y") being anomalous, we ask:
How much “work” would we need to bring it to the normalcy?

" The “work” required for each variable should
be a natural attribution score.

= The outlier P wouldn’t have been anomalous
if it were at A.

=" Hence, the amount of shift, §, can be viewed
as the “work,” indicating the responsibility of
each variable.

" How about B? We need a help of p(y | x).

10



Perturbation as explanation:

Our goal is to find the posterior distribution of 6.

" We need a generative model to handle the
ambiguity in prediction.
o The on-the-curve points may not represent normalcy.

* Generative process with 6 as model parameter.
o p(yI1x,8A)=NyI|f(x+8),171)
o priors (n, ag, by are hyperparameters):
v p(8) =N(&10,1I)
v p(A) = Gam(A | ay, by)

" Formal solution of the posterior (typically Neest = 1)
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Using variational Bayesian approach combined with a mean-field-like
approximation to get variable-wise posteriors.

" Formal solution of the posterior (typically Neest = 1)

) o< p(d Jh dX p(y" [ 2,8, \)p(N), Y 4 y:f(x)
/ o qx (0k)
- ' — et )P
tHl \/7{ : 2bo } ’

" How do we get a variable-wise distribution?

o We find an approximated solution by minimizing the
KL divergence between Q(6) and a factorized from:

Q(a) Q 617-- qu 5k

o We also use a mean-field- Ilke apprOX|mat|on to get an It Xk
explicit form of {q, (6;)}. 2 paper Xk

v
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(For ref.) How the GPA algorithm works

Algorithm 2 Generative Perturbation Analysis

= GPA algorithm has two parts:

Require: f(x), Diest, parameters n, v, k, ao, {b(x?)}.

o MAP (maximum a posteriori) estimation

1:

randomly initialize § =~ 0.

o Distribution estimation 2| repeat MAP
= MAP estimation solves: Ay
y a:|  for all (v%,x") € Drest do
t t 2y % . If (xf+9)
' N <o [yt — f(x! + 6)] 2 5: Compute the local gradient ~—=—
min 4 o [6]2+1n 1+ (@) 1 Ubdate g g+ 248y —f(x'+5)
6: paale g «— g+ =55 () [y —f (T4 ) ]2
7:| end for
o Use proximal gradient (with £, regularizer) 8| g (1—kn)d+x(2a0+1)g
o The gradient is estimated via local sampling 9:| 0 = sign(g) max {0, |g| —nv}
(Iike L||V|E) 10: | until convergence

= Distribution estimation uses a mean-field

approximation

o “Think of the others fixed to the MAP value
and focus on yourself.”

11:
12:
13:
14:
15:
16:

set 5 =6

for all k do distribution
qx(6) = Q(65,....6; 6,6, .,8,5),)
gk () — qi(-)/ [ A8 qx(8") with Eq. (18)

end for

return {q,.(:) | k=1,...,M} and §*
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“Why does this house look so unusual?”
House hunting use-case

Deviation-agnostic.

Variance is constant.

" Boston Housing data
o y: house price GPA BayLIME

o X: house age, # rooms, neighborhood crime rate, etc. CRIM |L //:t
. . . ZN |
* Computed attribution scores for the top outlier. s : I
o GPA s able to provide variable-specific distributions in CHAS ! /N
contrast to BayLIME NOX I /N
" |s it abargain? Probably yes. ru T N N
o It’s got unusually larger #rooms (RM) and lower poor AGE ! M
neighbors (LSTAT) than the peers in the same price range. ois  _— /TN
RAD 1 4\
75 b) W] o A N
anomaly ., e | PTRATIO | 4 AN
SCore 25 % ° PR NI X Ry SO Lstar o~ /TN
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“Why does this patient look so unusual?”

Healthcare use-case

= Diabetes data

o y: diabetes’ progression (numerical score)
o X: biomarkers (BMI, blood pressure, etc.)

* Computed attribution score for the

top outlier (patient # 63).
o Found a large negative score in BMI
v" The high and narrow pdf translates to
high confidence
o For his progression level, he would look
like a regular patient if BMI were much
smaller:
v' “He is overweight but healthy (low

progression)” or “He is healthy despite
overweight”
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Summary

= GPA is the first black-box attribution framework allowing probabilistic

attribution.

" We have showed a strong impossibility result: LIME, SV, and |G are deviation-

agnostic, and hence, not suitable for anomaly attribution.

=" We have also uncovered a relationship between LIME, SV, and IG for the first

time.
model-agnostic  training-data-free  baseline-input-free  y-sensitive  built-in UQ
LIME [34] yes yes yes no yes/no
SV [43,44] yes no yes no no
IG [39,46] yes yes no no no
EIG [6] yes no yes no no
Z-score 5] yes no yes no no
LC [20] yes yes yes yes no
GPA yes yes yes yes yes
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Thank youl!
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