IBM Research

Generative Perturbation Analysis for Probabilistic Black-Box Anomaly Attribution

Tsuyoshi (Ide-san) Ide, Naoki Abe {tide, nabe}@us.ibm.com IBM T. J. Watson Research Center

Tsuyoshi Idé, Naoki Abe, "Generative Perturbation Analysis for Probabilistic Black-Box Anomaly Attribution," In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2023, August 6-10, 2023, Long Beach, California, USA), pp. 845-856.

- What is the task, "Anomaly Attribution"?
- What's wrong with the existing attribution methods?
- What is the new idea?
- Illustrative examples

"Anomaly attribution" is an important topic in XAI (explainable AI) research.

(one of the input variables)

by computing the <u>attribution score</u> (responsibility score) for *each* of the input variables x.

"Anomaly attribution" is an important topic in XAI (explainable AI) research.

New capabilities that GPA has enabled

GPA = generative perturbation analysis (proposed method)

> deviationsensitive

attribution score (responsibility)

- What is the task, "Anomaly Attribution"?
- What's wrong with the existing attribution methods?
- What is the new idea?
- Illustrative examples

LIME, Shapley values (SV), and integrated gradient (IG) are three major existing black-box attribution methods.

- LIME, SV, IG have the same in/output
 - In: black-box y = f(x) and test sample.
 - $\circ~$ Out: attribution score for each variable

Why bother to develop a new method?

LIME, SV, and IG are to explain a black-box function itself locally.

- LIME = local gradient at x^t
 - $\circ~$ Gradient is numerically estimated via sampling.
- IG = increment from a reference point x^0

$$\mathrm{IG}_{i}(\boldsymbol{x}^{t} \mid \boldsymbol{x}^{0}) \triangleq (x_{i}^{t} - x_{i}^{0}) \int_{0}^{1} \mathrm{d}\alpha \left. \frac{\partial f}{\partial x_{i}} \right|_{\boldsymbol{x}^{0} + (\boldsymbol{x}^{t} - \boldsymbol{x}^{0})\alpha}$$

- EIG = expected IG
 - \circ Computed by marginalizing x^0
- SV = (something mysterious)

$$SV_{i}(\boldsymbol{x}^{t}) = \frac{1}{M} \sum_{k=0}^{M-1} {\binom{M-1}{k}}^{-1} \sum_{\mathcal{S}_{i}:|\mathcal{S}_{i}|=k} \left[\langle f \mid x_{i}^{t}, \boldsymbol{x}_{\mathcal{S}_{i}}^{t} \rangle - \langle f \mid \boldsymbol{x}_{\mathcal{S}_{i}}^{t} \rangle \right]$$

Can they be used to explain deviations? – No. Summary of theoretical results.

- Result 1: LIME, SV, IG, and EIG are deviation-agnostic
 - $\,\circ\,\,$ This is obvious from the original definition.
 - ✓ They explain f(x) locally at $x = x^t$, independently y.
 - The conclusion still holds even when the target function is f(x) y rather than f(x).
- <u>Result 2</u>: SV is equivalent to EIG up to the second order of power expansion. $SV_i(\boldsymbol{x}^t, y^t) \approx EIG_i(\boldsymbol{x}^t, y^t)$
- Result 3: LIME is equivalent to the derivative of IG and EIG

$$\text{LIME}_i(\boldsymbol{x}^t, y^t) = \frac{\partial \text{EIG}_i(\boldsymbol{x}^t, y^t)}{\partial x_i}$$

- What is the task, "Anomaly Attribution"?
- What's wrong with the existing attribution methods?
- What is the new idea?
- Illustrative examples

Given a test point (x^t, y^t) being anomalous, we ask: How much "work" would we need to bring it to the normalcy?

- The "work" required for each variable should be a natural attribution score.
- The outlier P wouldn't have been anomalous if it were at A.
- Hence, the amount of shift, δ, can be viewed as the "work," indicating the responsibility of each variable.
- How about B? We need a help of p(y | x).

Perturbation as explanation:

Our goal is to find the posterior distribution of δ .

- We need a generative model to handle the ambiguity in prediction.
 - $\circ~$ The on-the-curve points may not represent normalcy.
- Generative process with δ as model parameter.
 - $\circ p(y \mid \boldsymbol{x}, \boldsymbol{\delta}, \lambda) = \mathcal{N}(y \mid f(\boldsymbol{x} + \boldsymbol{\delta}), \lambda^{-1})$
 - \circ priors (η , a_0 , b_0 are hyperparameters):
 - $\checkmark \quad p(\boldsymbol{\delta}) = \mathcal{N}(\boldsymbol{\delta} \mid \mathbf{0}, \eta \mathbf{I})$
 - $\checkmark \quad p(\lambda) = \operatorname{Gam}(\lambda \mid a_0, b_0)$

Formal solution of the posterior (typically N_{test} = 1)

$$Q(\boldsymbol{\delta}) \propto p(\boldsymbol{\delta}) \prod_{t=1}^{N_{ ext{test}}} \int_0^\infty \mathrm{d}\lambda \ p(y^t \mid \boldsymbol{x}^t, \boldsymbol{\delta}, \lambda) p(\lambda)$$

Using variational Bayesian approach combined with a mean-field-like approximation to get variable-wise posteriors.

Formal solution of the posterior (typically N_{test} = 1)

$$Q(\boldsymbol{\delta}) \propto p(\boldsymbol{\delta}) \prod_{t=1}^{N_{\text{test}}} \int_{0}^{\infty} d\lambda \ p(y^{t} \mid \boldsymbol{x}^{t}, \boldsymbol{\delta}, \lambda) p(\lambda),$$
$$\propto p(\boldsymbol{\delta}) \prod_{t=1}^{N_{\text{test}}} \frac{1}{\sqrt{b_{0}}} \left\{ 1 + \frac{[y^{t} - f(\boldsymbol{x}^{t} + \boldsymbol{\delta})]^{2}}{2b_{0}} \right\}^{-(a_{0} + \frac{1}{2})},$$

- How do we get a variable-wise distribution?
 - We find an approximated solution by minimizing the KL divergence between $Q(\delta)$ and a factorized from:

$$Q(\boldsymbol{\delta}) = Q(\delta_1, \dots, \delta_M) \approx \prod_{k=1}^{M} q_k(\delta_k),$$

• We also use a mean-field-like approximation to get an explicit form of $\{q_k(\delta_k)\}$. \rightarrow paper

(For ref.) How the GPA algorithm works

GPA algorithm has two parts:

- MAP (maximum a posteriori) estimation
- \circ Distribution estimation
- MAP estimation solves:

$$\min_{\boldsymbol{\delta}} \left\{ \frac{\eta}{2} \|\boldsymbol{\delta}\|_{2}^{2} + \ln \left\{ 1 + \frac{[y^{t} - f(\boldsymbol{x}^{t} + \boldsymbol{\delta})]^{2}}{2b(\boldsymbol{x}^{t})} \right\}^{\frac{2a_{0}+1}{2}} \right\}$$

- $\circ~$ Use proximal gradient (with ℓ_1 regularizer)
- The gradient is estimated via local sampling (like LIME)
- Distribution estimation uses a mean-field approximation
 - "Think of the others fixed to the MAP value and focus on yourself."

Algorithm 2 Generative Perturbation Analysis

Require: $f(\mathbf{x})$, $\mathcal{D}_{\text{test}}$, parameters η , ν , κ , a_0 , $\{b(\mathbf{x}^t)\}$. 1: randomly initialize $\boldsymbol{\delta} \approx \mathbf{0}$.

2:	repeat MAP
3:	set $g = 0$
4:	for all $(y^t, x^t) \in \mathcal{D}_{\text{test}}$ do
5:	Compute the local gradient $\frac{\partial f(\mathbf{x}^t + \boldsymbol{\delta})}{\partial \boldsymbol{\delta}}$
6:	Update $\boldsymbol{g} \leftarrow \boldsymbol{g} + \frac{\partial f(\boldsymbol{x}^t + \boldsymbol{\delta})}{\partial \boldsymbol{\delta}} \frac{\boldsymbol{y}^t - f(\boldsymbol{x}^t + \boldsymbol{\delta})}{2b(\boldsymbol{x}^t) + [\boldsymbol{y}^t - f(\boldsymbol{x}^t + \boldsymbol{\delta})]^2}$
7:	end for
8:	$\boldsymbol{g} \leftarrow (1 - \kappa \eta) \boldsymbol{\delta} + \kappa (2a_0 + 1) \boldsymbol{g}$
9:	$\boldsymbol{\delta} = \operatorname{sign}(\boldsymbol{g}) \max \left\{ 0, \boldsymbol{g} - \eta \boldsymbol{v} \right\}$
10:	until convergence
11:	set $\delta^* = \delta$
12:	for all k dodistribution
13:	$q_k(\delta) = Q(\delta_1^*, \dots, \delta_{k-1}^*, \delta, \delta_{k+1}^*, \delta, \delta_M^*)$
14:	$q_k(\cdot) \leftarrow q_k(\cdot) / \int \mathrm{d}\delta' q_k(\delta')$ with Eq. (18)
15:	end for
16:	return $\{q_k(\cdot) \mid k = 1,, M\}$ and δ^*

- What is the task, "Anomaly Attribution"?
- What's wrong with the existing attribution methods?
- What is the new idea?
- Illustrative examples

"Why does this house look so unusual?" House hunting use-case

Boston Housing data

- \circ y: house price
- **x**: house age, # rooms, neighborhood crime rate, etc.
- Computed attribution scores for the top outlier.
 - GPA is able to provide variable-specific distributions in contrast to BayLIME

Is it a bargain? Probably yes.

 It's got unusually larger #rooms (RM) and lower poor neighbors (LSTAT) than the peers in the same price range.

	Deviation-agnostic. Variance is constant.							
	G	PA		Bay	/LIME			
CRIM			-					
ZN					\frown			
INDUS								
CHAS								
NOX			-					
RM								
AGE			-					
DIS			_					
RAD			_					
TAX	,		_ ^					
PTRATIC)		_					
LSTAT	-1		_	-5	0 5			

"Why does this patient look so unusual?" Healthcare use-case

Diabetes data

- y: diabetes' progression (numerical score)
- **x**: biomarkers (BMI, blood pressure, etc.)
- Computed attribution score for the top outlier (patient # 63).
 - $\circ~$ Found a large negative score in BMI
 - ✓ The high and narrow pdf translates to high confidence
 - For his progression level, he would look like a regular patient if BMI were much smaller:
 - ✓ "He is overweight but healthy (low progression)" or "He is healthy despite overweight"

- GPA is the first black-box attribution framework allowing probabilistic attribution.
- We have showed a strong impossibility result: LIME, SV, and IG are deviationagnostic, and hence, not suitable for anomaly attribution.
- We have also uncovered a relationship between LIME, SV, and IG for the first time.

	model-agnostic	training-data-free	baseline-input-free	y-sensitive	built-in UQ
LIME [34]	yes	yes	yes	no	yes/no
SV [43, 44]	yes	no	yes	no	no
IG [39, 46]	yes	yes	no	no	no
EIG $[6]$	yes	no	yes	no	no
Z-score $[5]$	yes	no	yes	no	no
LC [20]	yes	yes	yes	yes	no
\mathbf{GPA}	\mathbf{yes}	\mathbf{yes}	\mathbf{yes}	\mathbf{yes}	\mathbf{yes}

Thank you!