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My background and current role

▪ Ph.D. in physics (U. Tokyo, Japan) in 2000
o Theoretical/numerical study on high critical temperature superconductivity

▪ IBM Research – Tokyo
o LCD display → machine learning (ML)

▪ IBM T. J. Watson Research Center (2013-)
o Applied & basic research of ML

▪ IBM Semiconductors (2023-)
o Head of Data Science

▪ Recent work ( https://ide-research.net/publications/ )
o XAI for anomaly detection (AAAI 19, AAAI 21, KDD 23)
o Point processes (NeurIPS 21, AISTATS 24)
o Graph neural networks (AAAI 22, ICASSP 23)
o Decentralized learning (IJCAI 19, SMDS 21)

https://ide-research.net/publications/
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Agenda

▪ Introduction to explainable AI (XAI)

▪ Existing local attribution methods for regression

▪ The anomaly attribution problem

▪ Data science problems in semiconductor manufacturing
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The attribution problem: An example (RISE algorithm)

▪ Explains why specific object 
categories are relevant to an input 
image by showing category-specific 
saliency map.
o Input image tensor: X
o Use random binary mask 𝐌1, … , 𝐌𝑁

o Saliency map: 

✓ 𝐒sheep =
1

𝑁
σ𝑖=1

𝑁 𝑝sheep ⋅ 𝐌𝑖

o Sheep probability:

✓ 𝑝sheep = 𝑓sheep(𝐗 ⊙ 𝐌𝑖) 

▪ Applicable to any black-box image 
classifier 𝑓sheep ⋅ , 𝑓cow ⋅ , 𝑓bird ⋅ , …

Petsiuk, V. "Rise: Randomized Input Sampling for Explanation of black-box models." arXiv preprint arXiv:1806.07421 (2018).
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The attribution problem: An example (RISE algorithm)

▪ Explanation is provided as input attribution in this case.
o Which input dimension contributed to the outcome the most

▪ RISE is one of many possible way of attribution.
o Valid only for classification. 
o Model-agnostic

✓ Use only the classifier API: 𝑝𝑘 =  𝑓𝑘(image)
• k: The index of a predefined category 

• 𝑝𝑘: Probability of image belonging to the k-th category

o Instance-specific, i.e., local
✓ Don’t care about general properties of 𝑓𝑘(⋅) over the entire input domain. 

✓ Only properties relevant to a specific image matter.
o No critical hyperparameter
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Taxonomy of XAI methods: 
Complex and multi-faceted without context

▪ Inherently explainable models
o Examples: Decision trees, linear models

▪ Back vs. white box 
o White-box: 

✓ Access to the model parameters and / 
or training samples 

o Black-box:
✓ Only prediction outcome
✓ Often not have access to training 

samples
▪ Model-agnostic vs. model-specific

o Model-specific: 
✓ Uses intermediate outputs (e.g., feature 

maps, embeddings)
o Model-agnostic (post-hoc): 

✓ Can be applied to any model, regardless 
of internal structure

▪ Local vs. global explanation
o Local (instance-level): 

✓ For a specific input sample
✓ c.f. population-level explanation

o Global: 
✓ Explains model behavior in a subdomain

▪ Surrogate model
o A simpler, easy-to-explain model fitted 

to approximate a more complex model in 
a subdomain

▪ Feature attribution vs. example-based
o Feature attribution: 

✓ Explains prediction based on feature 
contributions

o Example-based: 
✓ "Prediction of X was Y because X's 

features are similar to X1, which also 
belongs to Y"

Speith, Timo. "A review of taxonomies of explainable artificial intelligence (XAI) methods." Proceedings of the 2022 ACM conference on fairness, accountability, and transparency. 2022.
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Explanation is context-dependent. Ability to provide 
actionable insight is the key.

▪ Question: What is a good explanation? 

▪My answer (as a professional industry researcher): 
o It entirely depends on the downstream business process.

✓ An explanation is useful if it provides clearer, actionable insights.

✓ There is no universally good explanation.

o Subjective satisfaction from general public is not relevant, in my opinion.

▪ Different Perspectives:
o Some argue that user studies (subjective satisfaction) are the only way to 

assess the quality of explanations.

o Others believe that reducing explanations to a well-known performance 
metric (such as classification accuracy) is essential.
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Agenda

▪ Introduction to explainable AI (XAI)

▪ Existing local attribution methods for regression

▪ The anomaly attribution problem
o Generative perturbation analysis (KDD 23)

o Results examples

▪ Application to advanced semiconductor manufacturing
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Focusing on input attribution for local, black-box regression 
model

▪Most of XAI methods focus on the 
classification task
o Particularly for images.
o Many business and industrial 

applications don’t fit neatly into 
classification problems.

▪ In regression models, especially 
when training samples are 
unavailable, input attribution 
can be viewed as the primary 
approach for explanations.

Example: Wine quality prediction

“Why is this particular wine rated as the 
highest quality?”

Which predictor variables (x) contribute to 
the outcome variable (y) most? 

• fixed acidity
• volatile acidity
• citric acid
• residual sugar
• chlorides
• free sulfur dioxide
• total sulfur dioxide
• density
• pH
• sulphates
• alcohol
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Reviewing three existing methods and their variants

▪ Local linear surrogate modeling (aka LIME)

▪ Integrated gradient (IG)
o Expected integrated gradient (EIG)

▪ Shapley values (SV)
o Kernel SHAP
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LIME computes the gradient of black-box functions locally.

▪ Sensitivity = gradient = attribution score
▪ Challenge:

o  𝑓(𝒙) is black-box (i.e., only its API is available). 
Impossible to compute the gradient analytically.

▪ Idea: 
o Randomly generate samples around a test sample 𝒙𝑡 

at which you want to obtain a model explanation.

✓ { 𝒙𝑡 1 , 𝑦𝑡 1 , … , 𝒙𝑡 𝑁 , 𝑦𝑡 𝑁 } where 𝑦𝑡 𝑛 = 𝑓 𝒙𝑡 𝑛 .

o Fit a (sparse) linear model (lasso).

✓ 𝑦 = 𝒂⊤𝒙 + 𝑏
o The regression coefficients serve an estimator of the 

gradient (= explanation). 

▪ The regression plane can be viewed as a simplified 
surrogate model defined locally. 

𝑥𝑖
𝑥𝑖

𝑡

local 
gradient

𝑦

• Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. “Why should I trust you?: Explaining the predictions of any classifier.” 
Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM (2016).

• LIME: Local Interpretable Model-agnostic Explanations 

random 
samples
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Integrated gradient (IG) computes the increment from a 
reference point.

▪ Definition of IG [Sipple 20] 
o Increment from a reference point 𝒙0

✓ Gradually changing 𝛼 from 0 to 1 amounts to a 
shift from the “reference point” to the test sample 
of interest 𝒙𝑡

✓ Integration = collecting infinitesimal increments

▪ This is another local attribution method.

▪ Issue: dependency on the arbitrary ref point. 𝑥𝑖
𝑥𝑖

𝑡𝑥𝑖
0

increment

𝑦

• John Sipple. “Interpretable, Multidimensional, Multimodal Anomaly Detection with Negative Sampling for Detection of Device Failure,” In Proceedings of the 37th 
International Conference on Machine Learning (ICML 20).
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Expected IG (EIG) eliminates IG’s dependency on the 
arbitrary reference point.

▪ Expected IG (EIG) [Deng+ 21]
o Computed by marginalizing  𝒙0 with a 

distribution of the reference point

▪ Increments and gradients are closely 
related. Can we relate (E)IG with LIME 
mathematically? 
o Yes → shown later

• The empirical distribution of the training samples, 
which is often unavailable. 

• LIME-like sampling distribution leads to a 
meaningless EIG value due to mutual cancelling.

𝑥𝑖
𝑥𝑖

𝑡𝑥𝑖
0

increment

𝑦

• Huiqi Deng, et al. , A Unified Taylor Framework for Revisiting Attribution Methods. In Proceedings of the AAAI Conference on Artificial Intelligence. 11462–11469, 2021.
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Shapley values (SV): Evaluating the impact of each variable’s 
“participation.”

▪ General definition of the SV (of the i-th input variable)

o 𝒮 𝑖 : A set of variables including the i-th 
o 𝒮 𝑖 − 𝑖: A set of variables removing the i-th from 𝒮 𝑖

o 𝑣(⋅): The gain function (or characteristic function) quantifying the benefit of 
forming the specified coalition.

o 𝜇(𝒮 𝑖 ): importance weight of the configuration 𝒮 𝑖 . 

▪ 𝒮 𝑖  specifies a team of coalition. 
▪ Typical choice for 𝑣(⋅) and 𝜇 𝒮 𝑖

o 𝑣(⋅) is chosen as the regression function 𝑓(⋅) itself [Štrumbelj- Kononenko 14]. 

o 𝜇 𝒮 𝑖 = 𝑀 × 𝑀−1
𝑘

−1
 with 𝑘 = |𝒮 𝑖 | and M is the number of input variables. 

Erik Štrumbelj and Igor Kononenko. 2014. Explaining prediction models and individual predictions with feature contributions. 
Knowledge and information systems 41, 3 (2014), 647–665.
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Shapley values (SV): Understanding the notion of 
“participation”

▪ Typical definition:
o Participation = take the value of 𝒙𝑡 (test sample of interest)

o Non-participation = take the value of some reference point

▪ 4-variate regression function example (i.e., M=4)
o For 𝑖 = 1, 𝑘 = 3, and 𝒮 1 = {1,2,3},

✓ Δ𝑓 𝒮 𝑖 ≡ 𝑓 𝒮 𝑖 − 𝑓 𝒮 𝑖 − 𝑖 = 𝑓 𝑥1
𝑡 , 𝑥2

𝑡 , 𝑥3
𝑡 , 𝑥4

𝑛
− 𝑓 𝑥1

𝑛
, 𝑥2

𝑡 , 𝑥3
𝑡 , 𝑥4

𝑛

✓ Here, 𝒙 𝑛  is a reference point

o Typically, the reference point is integrated out using the empirical distribution:

✓ Δ𝑓 𝒮 𝑖 =
1

𝑁
σ𝑛=1

𝑁 [𝑓 𝑥1
𝑡 , 𝑥2

𝑡 , 𝑥3
𝑡 , 𝑥4

𝑛
− 𝑓 𝑥1

𝑛
, 𝑥2

𝑡 , 𝑥3
𝑡 , 𝑥4

𝑛
]

▪ SV under the standard definition
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Shapley values (SV): Handling computational challenges

▪ SV under the standard definition

▪When M (input dimensionality) is large,  exact computation is 
prohibitively expensive. 

▪ Typical approximation methods
o Monte Carlo evaluation [Štrumbelj- Kononenko 14]. 

o kernelSHAP [Lundberg-Lee 17] 

✓ Leverages the (fascinating) characterization of SV as the solution of a least squares 
problem (!) [Charnes+ 88] and uses a certain Monte Carlo sampling.

• Lundberg, Scott M., and Su-In Lee. "A Unified Approach to Interpreting Model Predictions." Advances in Neural Information Processing Systems 30 (2017).
• Charnes, A., et al. "Extremal principle solutions of games in characteristic function form: core, Chebychev and Shapley value generalizations." Econometrics 

of planning and efficiency (1988): 123-133.
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Unifying LIME, (E)IG, and SV into the same family [Ide+ 23]

▪ EIG and SV satisfy the same sum rule:

✓ 𝒙𝑡: test point (at which you want to get an explanation)

✓ 𝒙0: reference point

▪ EIG and SV are equivalent up to the second order of Taylor expansion.
o EIG𝑖 𝒙𝑡 ≈ SV𝑖 𝒙𝑡

▪ LIME can be viewed as the gradient of EIG and IG in a certain limit

Idé, T., & Abe, N. (2023, August). Generative Perturbation Analysis for Probabilistic Black-Box Anomaly Attribution. In 
Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (pp. 845-856).

𝑓(⋅)’s average 
in the domain
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Agenda

▪ Introduction to explainable AI (XAI)

▪ Existing local attribution methods for regression

▪ The anomaly attribution problem

▪ Data science problems in semiconductor manufacturing
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Motivating problem: “Is there any issue with my building’s 
A/C system?”

▪ IBM TRIRIGA is a software platform 
of smart building management. 
o Energy consumption monitoring is a 

key feature.

▪ Situation:
o A building owner noticed a significant 

difference between forecasted and 
actual energy consumption.

o Suspecting a potential issue with the 
A/C system, the owner consulted IBM 
for advice.

▪ Question:
o What kind of data science problem 

does this situation suggest?

── actual
── prediction

time
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Motivating problem: “Is there any issue with my building’s 
A/C system?”

▪What kind of data science problem 
does this situation suggest?

▪ Typical constraints:
o You have access to input and 

output data, but not the details of 
the forecasting algorithm.

o You cannot definitively pinpoint 
the root cause due to many 
unknown factors.

▪ Solving the attribution problem 
would probably be the safest 
option for you as a data scientist.

── actual
── prediction

time
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The anomaly attribution problem: Explaining deviations 
between prediction and observation

Given:

▪ Black-box regression model 𝑦 = 𝑓 𝒙  
and a (set of) test sample (𝒙𝑡, 𝑦𝑡)
o No access to the model beyond API

o No access to the training data

Explain: 

▪ The deviation 𝑓 𝒙𝑡 − 𝑦𝑡

▪ by computing the attribution score 
(responsibility score) for each of the 
input variables 𝒙.

(𝒙𝑡 , 𝑦𝑡)

deviation

𝑦

Why did I 
get this?

𝑥𝑖

(one of the input variables)
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Why did I 
get this?

The anomaly attribution problem: Explaining deviations 
between prediction and observation

𝑥𝑖

(𝒙𝑡 , 𝑦𝑡)

𝑦

deviation

(one of the input variables)

in
p

u
t 

va
ri

ab
le

s

Hopefully, we want 
to get the score’s 
confidence as well.

attribution score (responsibility)

outside 
temp.

humidity

sun
radiation

….
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Anomaly attribution is not the same as the standard 
attribution task.

▪ LIME, SV, IG, and EIG are deviation-
agnostic.
o These methods explain 𝑓(𝒙) locally at 𝒙 = 𝒙𝑡, 

independently of the observed outcome 
value 𝑦.

o The limitation remains true even if we aim to 
explain the function 𝑓 𝒙 − 𝑦 rather than just 
𝑓(𝒙).

▪ Intuition (→ illustration):
o LIME as local gradient has nothing to do with 

the deviation.
o The increment of the regression function is 

unrelated with the deviation. 

T. Idé, N Abe, “Generative Perturbation Analysis for Probabilistic Black-Box Anomaly Attribution,” In Proceedings of the 29th ACM SIGKDD 
Conference on Knowledge Discovery and Data Mining (KDD 2023, August 6-10, 2023, Long Beach, California, USA), pp. 845-856. 

𝑥𝑖
𝑥𝑖

𝑡𝑥𝑖
0

(𝒙𝑡 , 𝑦𝑡)

increment

local 
gradient

deviation

𝑦

(one of the input variables)
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Seeking a new approach beyond local linear approximation

▪ Developed a new attribution 
algorithm so it can provide 
deviation-sensitive attribution 
scores. 

▪ The new approach is based on the 
concept of counterfactual 
perturbation.
o → next page

black-box model

anomalous sample

attribution score 
for (𝒙𝒕, 𝒚𝒕)

training data 
(unavailable)

test data 

𝛿1

𝛿6

𝛿3

(𝒙𝑡 , 𝑦𝑡)
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Given a test point (𝒙𝑡, 𝑦𝑡) being anomalous, we ask: 
How much “work” would we need to bring it to the normalcy? 

▪ The “work” required for each variable 
should be a natural attribution score.

▪ The outlier P wouldn’t have been 
anomalous if it were at A. 

▪ Hence, the amount of shift, 𝜹, can be 
viewed as the “work,” indicating the 
responsibility of each variable.

▪ Use 𝜹 as the attribution score.
𝑥𝑖

𝑦

(𝒙𝑡 , 𝑦𝑡) 

(𝒙𝑡 + 𝜹, 𝑦𝑡) 

P
A

B

𝑥𝑖
𝑡
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Perturbation as explanation: Technical notes of the Likelihood 
Compensation (LC) algorithm

▪ LC uses the likelihood to find an 
optimal perturbation. 
o This makes LC less ad hoc than 

methods like LIME, as it leverages 
the likelihood used during model 
training.

▪ LC needs to solve an optimization 
problem to determine 𝜹.
o LC seeks the point with either zero 

deviation or zero gradient. 
✓ →

▪ LC can be extended to evaluate 
the uncertainty of the score. 

observed 

sample

observed 

sample

(a) |deviation| = 0 (b) |gradient| = 0

• T. Idé, et al., “Anomaly Attribution with Likelihood Compensation,” In Proceedings of the Thirty-Fifth AAAI Conference on Artificial 
Intelligence (AAAI 21, February 2-9, 2021, virtual), pp.4131-4138

• T. Idé, N. Abe, “Generative Perturbation Analysis for Probabilistic Black-Box Anomaly Attribution,” In Proceedings of the 29th ACM SIGKDD 
Conference on Knowledge Discovery and Data Mining (KDD 2023, August 6-10, 2023, Long Beach, California, USA), pp. 845-856. 
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Motivating problem: “Is there any issue with my building’s 
A/C system?”

▪ One month-worth building energy data
o y: energy consumption 
o x: time of day, temperature, humidity, sun radiation, day of 

week (one-hot encoded)

▪ The score is computed based on hourly 24 test points for 
each day
o The mean of the absolute values are visualized

▪ LC pinpoints the root cause: High scores for daytime_Su 
(Sunday) and daytime_Sa (Saturday) suggest these days 
behave like holidays, which is accurate.

▪ LIME is insensitive to outliers

▪ Z-score does not depend on y (by definition)
o The artifact for the day-of-week variables is due to one-hot 

encoding

anomaly score

LC

LIME

Z-score
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Agenda

▪ Introduction to explainable AI (XAI)

▪ Existing local attribution methods for regression

▪ The anomaly attribution problem

▪ Data science problems in semiconductor manufacturing
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Semiconductor manufacturing: A rich field for data science 
applications

Source: Steve Blank, "The Semiconductor Ecosystem – Explained," 
https://steveblank.com/2022/01/25/the-semiconductor-ecosystem/

▪ Wafers are processed according to 
a predefined route, yet significant 
variations arise even with identical 
routes.

▪ Sources of variation
o Duplicated tools and chambers 

with subtle characteristic 
differences.

o Variable waiting times in time-
sensitive processes.

o Tool degradations over time.
o Ad hoc adjustments to 

processing recipes.
o etc. 

▪ Statistical machine learning is 
crucial to handle the process 
variabilities to enhance production 
yield.

deleted
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Fact: General-purpose ML tools rarely drive significant 
semiconductor innovation

▪ Despite overwhelming total data volume, the 
effective sample size can be small.
o One possible definition:

✓
(# of wafers)

(# of distinct processing conditions)

▪ Each wafer undergoes 1000s of processing steps 
with a slightly different condition in each step
o Slight variations in conditions at each step lead to 

an enormous number of similar yet distinct 
processing routes. general-

purpose AI / 
ML tools

Semiconductor 
manufacturing

substantial 
technology gap

~1Average wafer count of distinct 
processing routes in an R&D fab:

Did you know …?



33

Predicting a human life ≈ Predicting wafer outcomes?
One scene from Netflix film “Don’t Look Up” (2021) 

▪ Dr. Mindy (Leonardo DiCaprio) is 
challenged by an excentric billionaire, 
Peter Isherwell.

▪ Do you think Peter’s claim is plausible? 

▪ Wafers
o Process-process dependency.
o Process variations affecting in a 

combinatorial fashion.
▪ Humans

o A major or minor event can profoundly 
alter a person’s trajectory.

o Random and uncontrollable elements 
(e.g., chance encounters, genetics, etc.) 
can decisively influence a person's 
future.

Peter: “You know that BASH has over 40 million data 
points on you … I know what you are.”

“Our algorithms can even predict how you'll die. To 96... 
96.5% accuracy.” 

(quote source: IMDB)

deleted

https://www.imdb.com/title/tt11286314/characters/nm0753314
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Data science problems in semiconductor manufacturing

deleted
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Thank you!
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Explaining what went wrong: The black-box anomaly 
attribution problem

▪ Abstract: 
o Explainable AI (XAI) is one of the hottest topics in machine learning research. In real business and industrial applications, one particularly 

important scenario is explaining the gap between a prediction and the actual outcome, as this gap may indicate some system issue if the model 
has been trained on normal data. Attribution is the task that provides explanations by quantifying the responsibility of each input variable.

o In this talk, I will first review popular attribution approaches, including linear surrogate modeling (LIME), Shapley values, and integrated 
gradients. Next, I will discuss the limitations of these algorithms and how I addressed these challenges in a real-world anomaly attribution use 
case involving building energy management. If time permits, I will also share real-world anomaly attribution tasks from semiconductor 
manufacturing at IBM.

▪ Bio: 
o Dr. Tsuyoshi ("Ide-san") Ide is the head of Data Science for IBM Semiconductors at IBM Research. He received his Ph.D. in theoretical physics 

in 2000 from the University of Tokyo, Japan. After joining IBM Research – Tokyo, he shifted his research focus to data mining and machine 
learning. In 2013, he transferred to the T.J. Watson Research Center in New York. Dr. Ide is passionate about modeling real-world business 
problems using advanced machine learning techniques and has led numerous customer engagements. His recent research interests include 
anomaly detection and explanation, point process modeling of discrete events, and analytics of graph-structured data.
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