
IBM Semiconductors

Computing Input Responsibility Scores in 
Black-Box Anomaly Detection

Tsuyoshi (Ide-san) Ide (井手剛), Ph.D.,
Head of Data Science, IBM Semiconductors, at IBM Research 
Division



2

Agenda

▪ Introduction to explainable AI (XAI)

▪ Existing local attribution methods for regression

▪ The anomaly attribution problem
o Generative perturbation analysis (KDD 23)

o Results examples

▪ Application to advanced semiconductor manufacturing



3

XAI technique: An example (the RISE algorithm)

▪ Explains why specific object 
categories are relevant to an input 
image by showing category-specific 
saliency map
o Input image tensor: X
o Use random binary mask 𝐌1, … , 𝐌𝑁

o Saliency map: 

✓ 𝐒sheep =
1

𝑁
σ𝑖=1

𝑁 𝑝sheep ⋅ 𝐌𝑖

o Sheep probability:

✓ 𝑝sheep = 𝑓sheep(𝐗 ⊙ 𝐌𝑖) 

▪ Applicable to any black-box image 
classifier 𝑓sheep ⋅ , 𝑓cow ⋅ , 𝑓bird ⋅ , …

Petsiuk, V. "Rise: Randomized Input Sampling for Explanation of black-box models." arXiv preprint arXiv:1806.07421 (2018).
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XAI technique: An example (the RISE algorithm)

▪ Classifier-only

▪ Explanation = input attribution
o Which input dimension contributed to the outcome the most

▪Model-agnostic
o Use only the classifier API: 𝑝𝑘 =  𝑓𝑘(image)

✓ k: The index of a predefined category 

✓ 𝑝𝑘: Probability of image belonging to the k-th category

▪ Instance-specific, i.e., local
o Don’t care about general properties of 𝑓𝑘(⋅) over the entire input domain. 

o Only properties relevant to a specific image matter.

▪ No critical hyperparameter
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Taxonomy of XAI methods: 
Complex and multi-faceted without context

▪ Inherently explainable models
o Examples: Decision trees, linear models

▪ Back vs. white box 
o White-box: 

✓ Access to the model parameters and / or 
training samples 

o Black-box:
✓ Only prediction outcome
✓ Often not have access to training samples

▪ Model-agnostic vs. model-specific
o Model-specific: 

✓ Uses intermediate outputs (e.g., feature 
maps, embeddings)

o Model-agnostic (post-hoc): 
✓ Can be applied to any model, regardless of 

internal structure

▪ Local vs. global explanation
o Local: 

✓ For a specific input sample
o Global: 

✓ Explains model behavior in a subdomain 
capture characteristics of the model in a 
subdomain 

• e.g., using a Gaussian mixture model that is 
trained in that subdomain.

▪  Surrogate model
o A simpler, easy-to-explain model fitted to 

approximate a more complex model in a 
subdomain

▪ Feature attribution vs. example-based
o Feature attribution: 

✓ Explains prediction based on feature 
contributions

✓ Example-based: 
• "Prediction of X was Y because X's features 

are similar to X1, which also belongs to Y"

Speith, Timo. "A review of taxonomies of explainable artificial intelligence (XAI) methods." Proceedings of the 2022 ACM conference on fairness, accountability, and transparency. 2022.
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Explanation is context-dependent. Ability to provide 
actionable insight is the key.

▪ Question: What is a good explanation? 

▪My answer (as a professional industry researcher): 
o It entirely depends on the downstream business process.

✓ An explanation is useful if it provides clearer, actionable insights.

✓ There is no universally good explanation.

o Subjective satisfaction from general public is not relevant, in my opinion.

▪ Different Perspectives:
o Some argue that user studies are the only way to assess the quality of 

explanations.

o Others believe that reducing explanations to a well-known benchmark is 
essential.
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Agenda

▪ Introduction to explainable AI (XAI)

▪ Existing local attribution methods for regression

▪ The anomaly attribution problem
o Generative perturbation analysis (KDD 23)

o Results examples

▪ Application to advanced semiconductor manufacturing



8

Focusing on input attribution for local, black-box regression 
model

▪Most of XAI methods focus on the 
classification task
o particularly for images.
o Many industrial applications don’t 

fit neatly into classification 
problems.

▪ In regression models, especially 
when training samples are 
unavailable, input attribution 
can be viewed as the primary 
approach for explanations.

Example: Wine quality prediction

Why is this particular wine rated as the 
highest quality? 

Which predictor variables (x) contribute to 
the outcome variable (y) most? 

• fixed acidity
• volatile acidity
• citric acid
• residual sugar
• chlorides
• free sulfur dioxide
• total sulfur dioxide
• density
• pH
• sulphates
• alcohol
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Reviewing three existing methods and their variants

▪ Local linear surrogate modeling (aka LIME)

▪ Integrated gradient (IG)
o Expected integrated gradient (EIG)

▪ Shapley values (SV)
o Kernel SHAP
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LIME performs local sensitivity analysis on black-box 
functions

▪ Sensitivity = gradient = attribution score
▪ Challenge:

o  𝑓(𝒙) is black-box; No way of computing the gradient 
analytically.

▪ Idea: 
o Randomly generate samples around a test sample 𝒙𝑡 at 

which you want to obtain a model explanation.

✓ { 𝒙𝑡 1 , 𝑦𝑡 1 , … , 𝒙𝑡 𝑁 , 𝑦𝑡 𝑁 } where 𝑦𝑡 𝑛 = 𝑓 𝒙𝑡 𝑛 .

o Fit a (sparse) linear model (lasso)

✓ 𝑦 = 𝒂⊤𝒙 + 𝑏
o The regression coefficients serve an estimator of the 

gradient (= explanation). 

▪ The regression plane can be viewed as a simplified 
surrogate model defined locally. 

𝑥𝑖
𝑥𝑖

𝑡

local 
gradient

𝑦

• Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. “Why should I trust you?: Explaining the predictions of any classifier.” 
Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM (2016).

• LIME: Local Interpretable Model-agnostic Explanations 

random 
samples
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Integrated gradient (IG) computes the increment from a 
reference point

▪ Definition of IG [Sipple 20] 
o Increment from a reference point 𝒙0

✓ Gradually changing 𝛼 from 0 to 1 amounts to a 
shift from the “reference point” to the test sample 
of interest 𝒙𝑡

✓ Integration = collecting infinitesimal increments

▪ This is another local attribution method.

▪ Issue: dependency on the arbitrary ref point. 𝑥𝑖
𝑥𝑖

𝑡𝑥𝑖
0

increment

𝑦

• John Sipple. “Interpretable, Multidimensional, Multimodal Anomaly Detection with Negative Sampling for Detection of Device Failure,” In Proceedings of the 37th 
International Conference on Machine Learning (ICML 20).
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Expected IG (EIG) eliminates the dependency on the arbitrary 
reference point

▪ Expected IG (EIG) [Deng+ 21]
o Computed by marginalizing  𝒙0 with a 

distribution of the reference point

▪ Increments and gradients are closely 
related. Can we relate (E)IG with LIME 
mathematically? 
o Yes → shown later

• The empirical distribution of the training samples, 
which is often unavailable. 

• LIME-like sampling distribution leads to a 
meaningless EIG value due to mutual cancelling.

𝑥𝑖
𝑥𝑖

𝑡𝑥𝑖
0

increment

𝑦

• Huiqi Deng, et al. , A Unified Taylor Framework for Revisiting Attribution Methods. In Proceedings of the AAAI Conference on Artificial Intelligence. 11462–11469, 2021.
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Shapley values (SV): Evaluating the impact of each variable’s 
“participation”

▪ General definition of the SV (of the i-th input variable)

o 𝒮 𝑖 : A set of variables including the i-th 
o 𝒮 𝑖 − 𝑖: A set of variables removing the i-th from 𝒮 𝑖

o 𝑣(⋅): The gain function (or characteristic function) quantifying the benefit of 
forming the specified coalition.

o 𝜇(𝒮 𝑖 ): importance weight of the configuration 𝒮 𝑖 . 

▪ 𝒮 𝑖  specifies a team of coalition. 
▪ Typical choice for 𝑣(⋅) and 𝜇 𝒮 𝑖

o 𝑣(⋅) is chosen as the regression function 𝑓(⋅) itself [Štrumbelj- Kononenko 14]. 

o 𝜇 𝒮 𝑖 = 𝑀 × 𝑀−1
𝑘

−1

 with 𝑘 = |𝒮 𝑖 | and M is the number of input variables. 

Erik Štrumbelj and Igor Kononenko. 2014. Explaining prediction models and individual predictions with feature contributions. 
Knowledge and information systems 41, 3 (2014), 647–665.
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Shapley values (SV): Understanding the notion of 
“participation”

▪ Typical definition:
o Participation = take the value of 𝒙𝑡 (test sample of interest)

o Non-participation = take the value of some reference point

▪ 4-variate regression function example (i.e., M=4)
o For 𝑖 = 1, 𝑘 = 3, and 𝒮 1 = {1,2,3},

✓ Δ𝑓 𝒮 𝑖 ≡ 𝑓 𝒮 𝑖 − 𝑓 𝒮 𝑖 − 𝑖 = 𝑓 𝑥1
𝑡 , 𝑥2

𝑡 , 𝑥3
𝑡 , 𝑥4

𝑛
− 𝑓 𝑥1

𝑛
, 𝑥2

𝑡 , 𝑥3
𝑡 , 𝑥4

𝑛

✓ Here, 𝒙 𝑛  is a reference point

o Typically, the reference point is integrated out using the empirical distribution:

✓ Δ𝑓 𝒮 𝑖 =
1

𝑁
σ𝑛=1

𝑁 [𝑓 𝑥1
𝑡 , 𝑥2

𝑡 , 𝑥3
𝑡 , 𝑥4

𝑛
− 𝑓 𝑥1

𝑛
, 𝑥2

𝑡 , 𝑥3
𝑡 , 𝑥4

𝑛
]

▪ SV under the standard definition
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Shapley values (SV): Handling computational challenges

▪ SV under the standard definition

▪When M (input dimensionality) is large,  exact computation is 
prohibitively expensive. 

▪ Typical approximation methods
o Monte Carlo evaluation [Štrumbelj- Kononenko 14]. 

o kernelSHAP [Lundberg-Lee 17] 

✓ Leverages the (fascinating) characterization of SV as the solution of a least squares 
problem (!) [Charnes+ 88].

✓ (Details omitted)
• Lundberg, Scott M., and Su-In Lee. "A Unified Approach to Interpreting Model Predictions." Advances in Neural Information Processing Systems 30 (2017).
• Charnes, A., et al. "Extremal principle solutions of games in characteristic function form: core, Chebychev and Shapley value generalizations." Econometrics 

of planning and efficiency (1988): 123-133.
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Unifying LIME, (E)IG, and SV into the same family [Ide+ 23]

▪ EIG and SV satisfy the same sum rule:

✓ 𝒙𝑡: test point (at which you want to get an explanation)

✓ 𝒙0: reference point

▪ EIG and SV are equivalent up to the second order of Taylor expansion.
o EIG𝑖 𝒙𝑡 ≈ SV𝑖 𝒙𝑡

▪ LIME can be viewed as the gradient of EIG and IG in a certain limit

Idé, T., & Abe, N. (2023, August). Generative Perturbation Analysis for Probabilistic Black-Box Anomaly Attribution. In 
Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (pp. 845-856).

𝑓(⋅)’s average 
in the domain
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Explaining deviations between prediction and observation

Given:

▪ Black-box regression model 𝑦 = 𝑓 𝒙  
and a (set of) test sample (𝒙𝑡, 𝑦𝑡)
o No access to the model beyond API

o No access to the training data

Explain: 

▪ The deviation 𝑓 𝒙𝑡 − 𝑦𝑡

▪ by computing the attribution score 
(responsibility score) for each of the 
input variables 𝒙.

(𝒙𝑡 , 𝑦𝑡)

deviation

𝑦

Why did I 
get this?

𝑥𝑖

(one of the input variables)
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Why did I 
get this?

Explaining deviations between prediction and observation

𝑥𝑖

(𝒙𝑡 , 𝑦𝑡)

𝑦

deviation

(one of the input variables)

attribution score (responsibility)

in
p

u
t 

va
ri

ab
le

s

Hopefully, we want 
to get the score’s 
confidence as well.
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Explaining deviations is fundamentally different from 
explaining the model: Strong impossibility results

▪ LIME, SV, IG, and EIG are deviation-
agnostic [Ide+ 23].
o These methods explain 𝑓(𝒙) locally at 𝒙 = 𝒙𝑡, 

independently of the observed outcome 
value 𝑦.

o The limitation remains true even if we aim to 
explain the function 𝑓 𝒙 − 𝑦 rather than just 
𝑓(𝒙).

▪ Intuition (→ illustration):
o LIME as local gradient has nothing to do with 

the deviation.
o The increment of the regression function is 

unrelated with the deviation. 

T. Idé, N Abe, “Generative Perturbation Analysis for Probabilistic Black-Box Anomaly Attribution,” In Proceedings of the 29th ACM SIGKDD 
Conference on Knowledge Discovery and Data Mining (KDD 2023, August 6-10, 2023, Long Beach, California, USA), pp. 845-856. 

𝑥𝑖
𝑥𝑖

𝑡𝑥𝑖
0

(𝒙𝑡 , 𝑦𝑡)

increment

local 
gradient

deviation

𝑦

(one of the input variables)
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Seeking a new paradigm beyond local linear approximation

▪ Observations so far:
o LIME, (E)IG, and SV belong to the 

same family, relying on local linear 
approximations.

o These methods are inherently 
deviation-agnostic.

▪What’s next:
o We will briefly review key ideas 

from [Ide et al. AAAI 21] and [Ide 
et al. KDD 23] for moving beyond 
these limitations.

black-box model

anomalous sample

attribution score 
for (𝒙𝒕, 𝒚𝒕)

training data 
(unavailable)

test data 

𝛿1

𝛿6

𝛿3

(𝒙𝑡 , 𝑦𝑡)



22

Agenda

▪ Introduction to explainable AI (XAI)
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Given a test point (𝒙𝑡, 𝑦𝑡) being anomalous, we ask: 
How much “work” would we need to bring it to the normalcy? 

▪ The “work” required for each variable 
should be a natural attribution score.

▪ The outlier P wouldn’t have been 
anomalous if it were at A. 

▪ Hence, the amount of shift, 𝜹, can be 
viewed as the “work,” indicating the 
responsibility of each variable.

▪ How about B? We need a help of 𝑝(𝑦 ∣ 𝒙).
𝑥𝑖

𝑦

(𝒙𝑡 , 𝑦𝑡) 

(𝒙𝑡 + 𝜹, 𝑦𝑡) 

P
A

B

𝑥𝑖
𝑡
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Perturbation as explanation:  Likelihood compensation (LC) 
[Ide+ 21]

▪ We need a generative model to handle the 
ambiguity in prediction.
o The on-the-curve points may not represent 

normalcy.

▪ Generative process with 𝜹 as model 
parameter. 
o observation: 𝑝 𝑦 𝒙, 𝜹, 𝜆 = 𝒩(𝑦 ∣ 𝑓 𝒙 + 𝜹 , 𝜆−1)
o prior: 𝑝 𝜹 = 𝒩 𝜹 𝟎, 𝜂𝐈

▪ 𝜹 can be determined by solving 

o 𝛿∗ = argmax𝛿
1

𝑁test
σ𝑡=1

𝑁test ln 𝑝 𝑦𝑡 𝑥𝑡 , 𝜹, 𝜆 𝑝(𝜹)

✓ Typically, 𝑁test = 1

𝑥𝑘
𝑥𝑘

𝑡

(𝒙𝑡 , 𝑦𝑡) MAP 
point

𝑦 𝑦 = 𝑓(𝒙)
𝛿𝑘

∗

T. Idé, et al., Naoki Abe, “Anomaly Attribution with Likelihood Compensation,” In Proceedings of the Thirty-
Fifth AAAI Conference on Artificial Intelligence (AAAI 21, February 2-9, 2021, virtual), pp.4131-4138
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Generative perturbation analysis (GPA) [Ide+ 23]: Extending 
LC to incorporate uncertainty quantification

▪ The generative process can be viewed as a 
Bayesian inference model for 𝜹. 
o 𝑝 𝑦 𝒙, 𝜹, 𝜆 = 𝒩(𝑦 ∣ 𝑓 𝒙 + 𝜹 , 𝜆−1)

o priors (𝜂, 𝑎0, 𝑏0 are hyperparameters): 

✓ 𝑝 𝜹 = 𝒩 𝜹 𝟎, 𝜂𝐈

✓ 𝑝 𝜆 = Gam(𝜆 ∣ 𝑎0, 𝑏0)

▪ Then, the Bayesian posterior can be 
viewed as a probabilistic version of LC.
o Posterior distribution

𝑥𝑘
𝑥𝑘

𝑡

(𝒙𝑡 , 𝑦𝑡) MAP 
point

𝑦 𝑦 = 𝑓(𝒙)
𝑞𝑘(𝛿𝑘)

𝛿𝑘
∗

T. Idé, N. Abe, “Generative Perturbation Analysis for Probabilistic Black-Box Anomaly Attribution,” In Proceedings of the 29th ACM SIGKDD 
Conference on Knowledge Discovery and Data Mining (KDD 2023, August 6-10, 2023, Long Beach, California, USA), pp. 845-856. 
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Separating the contribution of each variable needs variational 
approximation

▪ Formal solution of the posterior (typically 𝑁test = 1)

▪ How do we get a variable-wise distribution?
o We find an approximated solution by minimizing 

the KL divergence between 𝑄 𝜹  and a 
factorized from:

o We also use a mean-field-like approximation to 
get an explicit form of 𝑞𝑘 𝛿𝑘 . → paper

𝑥𝑘
𝑥𝑘

𝑡

(𝒙𝑡 , 𝑦𝑡) MAP 
point

𝑦 𝑦 = 𝑓(𝒙)
𝑞𝑘(𝛿𝑘)

𝛿𝑘
∗
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(For ref.) How the GPA algorithm works 

▪ GPA algorithm has two parts: 
o MAP (maximum a posteriori) estimation
o Distribution estimation

▪ MAP estimation solves: 

o Use proximal gradient (with ℓ1 
regularizer) 

o The gradient is estimated via local 
sampling (like LIME)

▪ Distribution estimation uses a mean-
field approximation
o “Think of the others fixed to the MAP 

value and focus on yourself.”

MAP

distribution
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Comparing GPA with other methods: Summary

▪ LC and GPA associate the likelihood function with normalcy.  
o Assumption: likely = normal 

▪ This makes the algorithm deviation-sensitive and eliminates the 
dependency on arbitrary reference points. 
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“Why did my building’s AC system look anomalous?”
Building energy use-case

▪ One month-worth building energy data
o y: energy consumption
o x: time of day, temperature, humidity, sun radiation, day of 

week (one-hot encoded)

▪ The score is computed based on hourly 24 test points for 
each day
o The mean of the absolute values are visualized

▪ LC pinpoints the root cause: High scores for daytime_Su 
(Sunday) and daytime_Sa (Saturday) suggest these days 
behave like holidays, which is accurate.

▪ LIME is insensitive to outliers

▪ Z-score does not depend on y (by definition)
o The artifact for the day-of-week variables is due to one-hot 

encoding

anomaly score

LC

LIME

Z-score
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“Why does this house look so unusual?”
House hunting use-case

▪ Boston Housing data
o y: house price

o x: house age, # rooms, neighborhood crime rate, 
etc. 

▪ Computed attribution scores for the top outlier.
o GPA was able to provide variable-specific distributions

▪ Is it a bargain? Probably yes. 
o The house has unusually more rooms (RM) and a lower 

percentage of poor neighbors (LSTAT) compared to 
others in the same price range.

anomaly 
score
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“Why does this patient look so unusual?”
Healthcare use-case

▪ Diabetes data
o y: diabetes’ progression (numerical 

score)
o x: biomarkers (BMI, blood pressure, etc.)

▪ Computed attribution score for the top 
outlier (patient # 63).
o Found a large negative score in BMI 
o The high and narrow pdf translates to 

high confidence

▪ For his progression level, the patient 
would appear typical if his BMI were 
much lower.
o He could be described as:

✓ Overweight but with low progression

✓ Low progression despite being overweight

attribution score 
distribution
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Wafer defect density prediction is a huge black-box 
regression task

▪  Wafer defect density prediction as a function of process parameters 
(waiting time, recipe, etc.) and measurements (electronic resistance, 
etc.).
o Mfg. process is so complex that precise physics modeling is not possible.

o Data-driven models (e.g., DNN) should play a critical role for prediction. 

▪ Deviation explanation can be viewed as the inverse problem of the 
regression task. 
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AI/ML themes we are working on 

Trajectory-based process 
diagnosis

Simulation-based fab 
optimization

Fleet-level modeling of 
tool’s sensor data  
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Thank you!
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Computing Input Responsibility Scores in Black-Box Anomaly 
Detection

▪ Abstract: 
o Explainable AI (XAI) is an active research field in machine learning (ML) aimed at addressing growing concerns about the black-box nature of 

deep learning models. One particularly interesting scenario in XAI is explaining what might go wrong with the model when a prediction 
significantly deviates from the actual outcome. While this problem can be formalized in many different ways, I focus on the task of input 
attribution, which seeks to quantify how much each input variable of the model is responsible for the observed deviation.

o In this talk, I will first review existing attribution approaches recently developed in the ML community, including linear surrogate modeling, 
Shapley values, and integrated gradients. After summarizing the challenges of these methods in the context of anomaly attribution, I will 
introduce a newer notion of likelihood compensation as a major counterfactual-type explanation, along with its probabilistic extensions. If time 
permits, I will also share challenging real-world anomaly attribution problems from semiconductor manufacturing at IBM.

▪ Bio: 
o Dr. Tsuyoshi ("Ide-san") Ide is currently the head of data science for IBM Semiconductors at IBM Research. He received his Ph.D. in theoretical 

physics in 2000 from the University of Tokyo, Japan. After joining IBM Research – Tokyo, he shifted his research focus to data mining and 
machine learning. In 2013, he transferred to the T.J. Watson Research Center in New York. Dr. Ide is passionate about modeling real-world 
business problems using advanced machine learning techniques and has led numerous customer engagements. His recent research interests 
include anomaly detection and explanation, point process modeling of discrete events, and analytics of graph-structured data.
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