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Abstract—For optimized cycle time control, a precise under-
standing of lot arrival times is critical. Queueing theory has
been used as a lightweight model for estimating WIP (work-in-
progress) arrivals in fabs, typically under the highly simplified
assumption that lot arrivals follow the Poisson process. This
paper investigates the impact of lot arrival density fluctuations
on manufacturing cycle time. Motivated by the observation that
actual lot arrival times often exhibit clustering behavior, we
propose using the Hawkes process to describe the stochasticity
of lot arrivals. Our empirical evaluation on NY CREATES fab
data shows that: 1) the Hawkes process offers a better fit than
the Poisson process, and 2) this clustering behavior leads to
increases in both WIP and cycle time, as demonstrated through
WIP simulation.

I. INTRODUCTION

Accurate estimation of lot cycle time is critical in the
semiconductor industry, not only for strategic-level decisions
such as capacity planning, but also for operational-level deci-
sions such as scheduling and dispatching. Queueing theory
is a powerful tool for estimating cycle time, especially in
the capacity planning of semiconductor fabs, and has been
utilized for decades [1] [2]. In queueing theory for fab capacity
planning, lot arrivals are typically assumed to follow a Poisson
process. Mathematically, this amounts to assuming the statis-
tical independence of lot events. In real semiconductor fabs,
however, lots can be interdependent due to batch processing
and queues in processing equipment.

Several studies in the literature discuss the validity of
the Poisson assumption in lot arrival analysis. For instance,
Sokhan-Sanj et al. [3] point out that the Poisson assump-
tion may significantly underestimate the variability of lot
arrival events. Inoue et al. [4] compare actual inter-arrival
times with the exponential distribution—a consequence of the
Poisson assumption—and report significant discrepancies with
observed data. However, the impact of lot arrival variability
on cycle time, one of the key performance indicators, remains
largely underexplored in the literature.

In this paper, we focus on density fluctuations in actual lot
arrivals and investigate their impact on cycle time. Figure 1
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Fig. 1. An Example of actual lot arrivals. The non-uniformity and clustering
behavior of events are observed.

Fig. 2. Analysis approach

visualizes the lot arrival events of a lithography equipment (see
Sec. III-B for details), with each bar representing the time at
which an arrival event occurred. The observed non-uniformity
and density fluctuations indicate that the traditional Poisson
process may not be the most suitable model, suggesting that
a better alternative for lot arrival event analysis exists.

In semiconductor manufacturing, where recurrent wafer
processing tends to cause lot congestion, modeling lot-to-lot
dependency is crucial for precise cycle time estimation. One
approach is accounting for the self-excitation property, which
models the triggering effect of previous events (i.e., the more
lots that arrive, the higher the event density). The Hawkes
process is one of the most widely-known models holding this
property [5]. The goal of this paper is twofold: 1) to analyze
the Hawkes process using real fab data in comparison to its
Poisson counterpart, and 2) to study the impact of lot density
fluctuations caused by the self-excitation property on cycle
time using WIP (work-in-progress) simulation. The outline of
our approach is illustrated in Figure 2.

II. RELATED WORK

A. Lot arrivals in Semiconductor Manufacturing

Capacity Planning: Queueing theory is one of the key
foundations to estimate the performance of a fab such as
cycle time and WIP [1] [2]. The primary tools for capacity
planning based on queueing theory are queueing models
and throughput-cycle time (T-C) profiles. Queueing models



represent a fab as a queueing network, enabling fast estimation
of cycle time [6] [7]. The T-C profile, also known as the
Operating Curve, visualizes the trade-off relationship between
the throughput and cycle time, providing insights for capacity
planning decisions [8] [9]. The cycle time approximation
formulas used in these methods are based on the assumption
that lot arrivals are mutually independent [10] [11] or, under
a stronger assumption, follow a Poisson process [12].

Discrete Event Simulation (DES): DES is widely used in
various areas of semiconductor manufacturing, not only for
capacity planning but also for WIP forecasting, scheduling,
and automated handling and management system (AHMS)
planning, as extensively studied in [13]. For optimizing op-
erations within specific areas, such as lot scheduling in lithog-
raphy, area-specific DES is commonly employed [14] [15].
In area-specific DES, lot arrival models provide an important
input to DES, where the Poisson process is commonly used to
represent the stochastic nature of lot arrival events in practice.

B. Variability of Lot arrivals

Several studies have focused on fluctuations of lot arrivals
and have made significant observations regarding deviations
from the Poisson process model in actual lot arrival events.
As mentioned previously, Sokhan-Sanj et al. [3] pointed out
that the Poisson process underestimates the variability of lot
inter-arrival times and proposed the use of a hyperexponential
distribution as an alternative, which still assumes the statistical
independence of lot arrivals. Inoue et al. [4] investigated the
conditions under which lot arrivals can be approximated by a
Poisson process, although only limited quantitative discussion
was provided. Our comprehensive literature survey, however,
showed that little is known about the quantitative impact of
lot fluctuations on cycle time while specifically focusing on
the independence of lot arrivals.

C. Application of Hawkes Process

The Hawkes process has been applied in various fields
where event arrivals mutually influence each other, such as
seismology, trading activity in financial markets [16], social
media posts [17], and warning events in data centers [18].
Existing studies on the Hawkes process in the context of
queueing theory are primarily focused on mathematical for-
malism (e.g. [19]). To the best of our knowledge, this paper
is the first to apply the Hawkes process to analyze lot arrival
events in the semiconductor industry.

III. LOT ARRIVAL MODEL ESTIMATION

In this section, we focus on specific equipment and fit a
point process model using actual lot arrival data.

A. Problem settings

Definition of Lot Arrival Events: Given a time period [0, T ]
during which n lot arrival events occur, we define the lot arrival
events at equipment e as

T e
n = {t1, t2, ..., tn},

where ti represents the i-th lot arrival time at equipment e.
Here, the lot arrival at e refers not to the arrival at physical
equipment but rather to the arrival of the operation. This is
because after completing a previous operation, a lot proceeds
to the next operation according to the predefined rules and
must wait until the equipment becomes available. Additionally,
simultaneous lot arrivals at the same time ti, such as when
multiple lots are processed simultaneously in the previous
operation, are treated as a single event to better reflect the
actual lot arrival behavior.

Models and Estimation Method: As discussed in Section I,
we compare the Poisson process model with Hawkes process
model to evaluate their goodness of fit to the actual lot arrival
data. In the point process theory, a quantity known as the
intensity function plays a key role. The intensity function
λ(t | Ht, θ) represents the probability density of an event
occuring at the next moment, given the event history Ht and
model parameters θ. The intensity functions for the Poisson
process and Hawkes process are shown in Eqs. (1) and (2),
respectively. We used an exponential kernel for the kernel
function for the Hawkes process.

λ(t | Ht, µ) = µ (1)

λ(t | Ht, µ, a, b) = µ+
∑
ti<t

ab exp{−b(t− ti)} (2)

Our goal here is to estimate the model parameters (µ for the
Poisson process and (µ, a, b) for the Hawkes process) from the
lot arrival data T e

n. We employ maximum likelihood estimation
(MLE) to estimate the parameters (see Appendix for more
details).

Evaluation Method: The goodness of fit of the estimated
model is evaluated by Akaike Information Criteria (AIC) [20],
which is defined as

AIC ≜ −2 lnL+ 2k (3)

where L is the maximum likelihood and k is the number
of free parameters. AIC is a well-established model selection
criterion in statistics and a lower AIC value indicates a better
balance between goodness of fit and model complexity. The
term L in Eq. (3) is obtained through MLE, meaning AIC
inherently incorporates MLE in its model selection framework.

B. Fab Data

For the analysis, the operation history data extracted from
the Manufacturing Execution System (MES) of NYCREATES
Albany Nanotech Fab was used. We selected two pieces
of equipment: one from furnace equipment (EQP1) and the
other from lithography equipment (EQP2), where cycle time
management is critical as described in [14] [15]. The operation
history data records the movement of each lot, enabling us to
track the transition of the lot from one operation to another
with each lot move. The extracted data has been preprocessed
to generate lot arrival events, as described in Section III-A.
Table I shows the fab data statistics used in our analysis.



TABLE I
FAB DATA STATISTICS

number of lot arrivals(n)
EQP1 (furnace) 232

EQP2 (lithography) 660

TABLE II
COMPARISON OF AIC (LOWER IS BETTER)

Poisson Hawkes
EQP1 (furnace) 1320.8 1287.5

EQP2 (lithography) 2373.6 2281.9

Fig. 3. Examples of sampled data plot of event(top) and empiciral intensity
function(bottom) from the estimated models for EQP2. The dotted lines
represent the average arrival rate of the estimated model, which is nearly
identical in both models.

C. Estimation Results

Based on the defined experimental conditions, we estimated
the model parameters and evaluated their fit to the data.
The fitting results are shown in Table II. The AIC for the
Hawkes process model is smaller than that of the Poisson
process model for both pieces of equipment, indicating that
the Hawkes process model better fits the data than the Poisson
process model.

To provide a more intuitive understanding of the results,
we examine the estimated results for a specific piece of
equipment EQP2. Similar trends were observed for EQP1.
Figure 3 shows the empirical intensity function of estimated
two models for EQP2. The fluctuation range of the intensity
function in the Hawkes process is larger than that in the
Poisson process, which suggests that the Hawkes process
better captures the density fluctuations and clustering behavior
compared to the Poisson process as shown in Figure 1, even
though the estimated average arrival rates are nearly the same
(see Appendix for more details about the average arrival rate).
Figure 4 shows the probabilistic distributions of lot arrival
counts over 6 hours and lot inter-arrival times based on the
estimated model. We can see that the Poisson process model
shows a large discrepancy from the actual data, whereas the
Hawkes process model fits the data better. Specifically, from
the inter-arrival time chart, the Hawkes process model captures
the clustering behavior of lot arrivals, where more records are
observed near zero inter-arrival time compared to other data
points.

Fig. 4. Histgram of estimated arrival counts and inter-arrival time of EQP2.
The estimated lines of the Poisson and Hawkes processes are averaged over
300 generations using the estimated models. All lines and histogram are
normalized so that integral value equals 1.

IV. CYCLE TIME EVALUATION

The key question to address here is how does the clustering
behavior of lot arrivals modeled by Hawkes process in an
actual fab influence cycle time? In this section, using the
estimated lot arrival model for EQP2 in the previous section,
we perform what-if analysis with a Discrete Event Simulator.
By generating lot arrival events using the estimated Poisson
and Hawkes models, we compare the impact on cycle time
under the same fab simulation conditions.

Simulation Conditions

When there is variability in lot arrivals at certain equipment,
its impact on cycle time can be divided into two categories:
the direct impact on cycle time at the equipment and the
propagated impact on other equipment. However, the latter
can be reduced to the former by refocusing on the lot arrivals
at the equipment in question. Therefore, in this study, we focus
on the former case and use a simplified fab model, the single
equipment model, to observe the basic behavior of cycle time.

The simulation conditions are summarized in Table III. The
fab model consists of a single piece of equipment, and the
lots follow a single route with a single process operation. The
equipment processes one lot at a time, requiring subsequent
lots to queue and wait until the current lot’s processing
completes. Lots are generated with a fixed lot size, and the
Poisson process and the Hawkes process, with the parameters
estimated in the previous section, are used as lot arrival models
for comparison. The arrival rate was varied between 60% and
95% of the utilization load to assess the impact of different lot
arrival rates. Here, we refer to the lot arrival rate corresponding
to 80% equipment utilization as the baseline lot arrival rate.

The key performance indicators (KPIs) to be confirmed are
listed below:

• Utilization (= Processing Time / Simulation Time)
• X-Factor (= Cycle Time / Processing Time)
• Number of WIP Lots

Here, cycle time is calculated as the sum of processing
time and waiting time. These KPIs are computed for each
simulation run and averaged over the simulation period. And
their distribution is analyzed based on 300 simulation runs to
account for the randomness in event generation from the point
process.



Fig. 5. Hisgram of KPIs from 300 simulation runs with the baseline lot arrival
rate. The histogram is normalized so that integral value equals 1.

Fig. 6. KPI results from 300 simulation runs with varing lot arrival rate,
expressed as load rates for equipment utilization. The solid line represents the
mean and the shaded area indicates the 50% percentile range. The vertical
dotted line represents the case of baseline lot arrival rate as shown in Figure
5.

As a simulation tool, we use IBM Lot Simulator1, the
discrete event simulator which can predict lot moves based
on the fab model and lot arrival information.

Simulation Results

The comparison of KPIs between the Poisson and Hawkes
models for the baseline lot arrival rate is shown in Figure
5. Rather surprisingly, although the utilization is nearly the
same in both models, X-Factor and the number of WIP are
significantly higher in the Hawkes model compared to the
Poisson model. This suggests that the density fluctuations of
lot arrivals cause a temporal increase of WIP, which signifi-
cantly increases the waiting time of subsequent arriving lots.
The higher tendencies of X-Factor and WIP in the Hawkes
model are consistently observed, even when the load rate
is varied between 60% and 95% of the utilization load, as
shown in Figure 6. In particular, this tendency becomes more
pronounced in equipment with a high utilization rate.

V. CONCLUSION

This paper demonstrated that actual lot arrivals deviate
from the Poisson process and that the Hawkes process more
accurately represents the density fluctuations of lot arrival
events. Furthermore, this clustering behavior leads to a signif-
icant increase in WIP and cycle time, highlighting the serious
limitations of classical queueing theory in capacity planning.

Future work is expected to include a more comprehensive
analysis across the entire fab.

1IBM Advanced Semiconductor Manufacturing Simulator

ACKNOWLEDGEMENT
The authors would like to thank NYCREATES for providing

the Albany Nanotech Fab data necessary for this study.

APPENDIX
The formulation and implementation as to point process in

the appendix refer to [21] [22].

A. Parameter Estimation of Point Processes using Maximum
Likelihood Method

Given event data Tn = {t1, t2, ..., tn} observed over the pe-
riod [0, T ], and assuming that it follows a point process model
with an intensity function λ(t | Ht, θ), the unknown parameter
θ can be estimated using the maximum likelihood method.
In this approach, the parameter estimate θ̂ is determined by
maximizing the log-likelihood function.

θ̂ = argmax
θ

lnL(θ | Tn) (4)

The likelihood function L(θ | Tn) is defined using the
probability density function p[0,T ](Tn | θ) as follows.

L(θ | Tn) = p[0,T ](Tn | θ). (5)

1) Poisson Process: The probability density function of the
Poisson process is given by

p[0,T ](Tn | µ) = µn exp(−µT ).

In this case, Eq. (4) can be solved analytically, and the
maximum likelihood estimate θ̂ is obtained as follows.

µ̂ =
n

T
(6)

2) Hawkes Process: The probability density function of the
Hawkes process is given by

p[0,T ](Tn | µ, a, b) =
n∏

i=1

µ+
∑
j<i

ab exp{−b(ti − tj)}


× exp

[
−µT −

n∑
i=1

∫ T

ti

ab exp{−b(s− ti)}ds

]
. (7)

Since Eq. (4) cannot be solved analytically in this case,
numerical methods are employed [23]. Here, we use a quasi-
Newton method. The gradients of each parameter are given as
follows.

∂ lnL

∂µ
=

n∑
i=1

1

µ+Ai
− T (8)

∂ lnL

∂a
=

n∑
i=1

1

µ+Ai

∂Ai

∂a
−

n∑
i=1

[1− exp(−b(T − ti))] (9)

∂ lnL

∂b
=

n∑
i=1

1

µ+Ai

∂Ai

∂b
−

n∑
i=1

a(T − ti) exp(−b(T − ti))

(10)

Here, Ai =
∑

j<i ab exp−b(ti − tj). It is known that Ai,
∂Ai

∂a , and ∂Ai

∂b can be efficiently computed using recurrence
relations, enabling computation in the order of the number of
data points.



TABLE III
SIMULATION CONDITIONS

Product # of Routes 1
# of Operations per Route 1

Lot
Lot Size Fixed(25)

Lot Arrival Model Poisson Process / Hawkes Process
Lot Arrival Rate Varied between 60% and 95% of the utilization load

Equipment
# of equipment 1

Processing Time Per Lot Set to correspond to 80% utilization for the estimated average lot arrival rate
Dispatch Rule FIFO(First In First Out)

General Simulation Period 3 months
Simulation Run 300

B. Average occurence rate of Point Process

The average occurrence rate represents the expected fre-
quency of event occurrences and is defined as the expectation
of the intensity function, given by the following equation:

ν(t) = E[λ(t | Ht)], (11)

where E[·] represents the expectation with respect to Ht.
For the stationary Poisson process and the stationary Hawkes
process considered in this study, the average occurrence rate
is independent of time. For the Poisson process, using the
definition of intensity function Eqs. (1) and (11), the average
occurrence rate can be derived straightforwardly as follows:

νpoisson = µ (12)

For the Hawkes process, the following equation can be drived
using Eqs. (2) and (11) under the assumptions of stationarity:

νhawkes = E[λ(t | Ht)] (13)

= µ+

∫
νhawkesab exp(−bτ)dτ (14)

= µ+ aνhawkes (15)

Thus, the average occurrence rate for Hawkes process can be
derived as follows.

νhawkes =
µ

1− a
(16)
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