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Abstract—How can we identify problematic upstream pro-
cesses when a certain type of wafer defect starts appearing at
a quality checkpoint? Given the complexity of modern semi-
conductor manufacturing, which involves thousands of process
steps, cross-process root cause analysis for wafer defects has
been considered highly challenging. This paper proposes a novel
framework called Trajectory Shapley Attribution (TSA), an
extension of Shapley values (SV), a widely used attribution
algorithm in explainable artificial intelligence research. TSA
overcomes key limitations of standard SV, including its disregard
for the sequential nature of manufacturing processes and its
reliance on an arbitrarily chosen reference point. We applied
TSA to a good-bad wafer diagnosis task in experimental front-
end-of-line processes at the NY CREATES Albany NanoTech
fab, aiming to identify measurement items (serving as proxies for
process parameters) most relevant to abnormal defect occurrence.

I. INTRODUCTION

Root cause analysis (RCA) of wafer defects is a key
challenge throughout all stages of semiconductor manufac-
turing, from process integration to high-volume production.
Performing RCA across multiple process steps is particularly
difficult due to the complex sequence and combination of
physically and chemically diverse processes, which are carried
out using various equipment across hierarchical levels such as
wafer, lot, and batch.

RCA is often approached as a by-product of virtual metrol-
ogy (VM) modeling, which aims to predict a quality metric as
a function of process variables. Typically, VM is formulated
as a regression or classification problem. However, existing
approaches still face challenges that hinder their practicality.
Regularized linear regression combined with variable selection
techniques, a commonly adopted VM approach (e.g., [1]–
[3]), essentially performs variable-wise correlation analysis
for attribution, disregarding the sequential nature of the pro-
cessing route. While recurrent neural networks (RNNs) and
Transformers can capture complex nonlinear dependencies
in sequential processes (e.g., [4]–[8]), they operate as black
boxes, making input attribution a non-trivial task.
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Fig. 1. Defect attribution. Given a defect flag y and a set of observed
in-line measurements x, compute the responsibility score si(x) for each
measurement item as a proxy for the underlying process.

To address the interpretability challenges of deep-learning-
based models and facilitate actionable insights, techniques de-
veloped in the explainable artificial intelligence (XAI) research
community are gaining increasing attention in semiconductor
data analytics. One key approach is Shapley values (SV) [9]–
[11], which compute attribution scores for each input variable
in a prediction model, given an observed input-output pair.
When applied to a VM model, SV can provide valuable
insights into which input variables are most responsible for an
observed process quality metric. However, for cross-process
defect attribution, existing approaches (e.g., [12]–[15]) have
two main limitations: they fail to respect the sequential nature
of semiconductor processes and rely on an arbitrarily chosen
baseline (or reference) point. These issues stem from the
original modeling assumptions of SV.

In this paper, we propose a model-agnostic input attribution
algorithm called Trajectory Shapley Attribution (TSA), a novel
extension of SV designed for scenarios where input variables
form a trajectory. As discussed later, TSA eliminates depen-
dency on an arbitrary baseline point by incorporating a data
imputation algorithm that leverages the lot-wafer hierarchy in
semiconductor manufacturing. We apply our methodology to
in-line measurements from a state-of-the-art front-end-of-line
(FEOL) process at the Albany NanoTech fab to demonstrate
the utility of our approach.



II. RELATED WORK

The overall framework of in-line measurement attribution
aligns with advanced process control (APC), which encom-
passes virtual metrology (VM), variable attribution, and recipe
tuning as key sub-tasks. For a recent and comprehensive
review of APC, VM, and related tasks, see [16]. However,
most existing studies focus on specific processes. While cross-
process dependency analysis and attribution of wafer quality
issues are crucial for accelerating yield improvement [17], the
vision of digital twins—namely, data-driven, semi-automated
yield control—remains far from reality. In many mass pro-
duction fabs, yield ramp-up still requires significant manual
effort.

The integration of model-agnostic XAI techniques with
advanced quality prediction models is a major research trend
in semiconductor analytics. This approach aims to strike an
optimal balance between predictive power and interpretability.
Among various XAI methods (see, e.g., [18] for a general
overview), the Shapley value (SV) is the most widely used
in semiconductor analytics. Torres et al. [12] and Stoner et
al. [13] were among the first to leverage SV for fab-wide yield
control. Lee et al. [14] applied SV to ten different regression
models for yield prediction and attribution, demonstrating its
model-agnostic nature. Guo et al. [15] further utilized SV for
chip probing yield in a good-bad classification setting.

Ironically, despite its widespread adoption, most studies
treat SV as a black-box software tool, paying little attention
to the validity of its modeling assumptions. We argue that
the original definition of SV may not be fully appropriate
for semiconductor manufacturing due to two key issues: 1)
variable coalitions include physically inadmissible process
routes, and 2) the default baseline value in SHAP, a popular
Python implementation [11], disregards the wafer-lot hier-
archy. The proposed Trajectory Shapley Attribution (TSA)
addresses these limitations.

Finally, the Transformer architecture has recently gained
attention in semiconductor analytics [4], [5] due to its ability
to directly model dependencies between sequential input vari-
ables via the self-attention mechanism [19]. However, Trans-
formers are known to be even more data-hungry than RNNs.
It remains an open question whether Transformers provide
reliable predictive performance in semiconductor applications,
given the challenge of extremely low effective sample sizes,
as discussed in Sec. III-B. For instance, Han et al. [5]
evaluated their proposed Transformer-based VM model using
only 344 training samples and 36 validation samples—orders
of magnitude smaller than the “internet-scale” datasets used in
text, speech, and vision domains, where RNN and Transformer
architectures have demonstrated remarkable success [20], [21].
Moreover, in the VM setting, Transformer input ‘tokens’ are
aggregated in some manner to predict the target variable,
introducing an additional explainability challenge.

III. PROBLEM SETTING

This section outlines the machine learning tasks we address
and the key modeling assumptions.

A. Attribution vs. Prediction

The attribution task considered in this paper is defined as
follows:

Definition III.1 (In-line measurement attribution). Given a
binary wafer quality label y ∈ {0, 1} and a set of in-line
measurements x ∈ RD (i.e., a D-dimensional real-valued
vector), compute the attribution score si(x) that quantifies
the contribution of each measurement item i = 1, . . . , D to
the outcome y, serving as a proxy for the underlying process.

Here, the binary label is defined as 1 for bad wafers and 0
for good wafers. As illustrated in Fig. 1, each measurement
tool is associated with a specific processing tool and acts as
its proxy. Some measurements may be performed multiple
times on the same wafer due to reentrant processes. In such
cases, only the latest observations are retained, allowing the
in-line measurement history to be represented as a fixed-
dimensional vector x ∈ RD per wafer, although some mea-
surement items may be missing. A single measurement tool
can produce multiple measurement items. For example, a set
of critical dimensions may be measured at multiple locations
on a wafer, with their mean and standard deviation recorded.
Consequently, D can be on the order of thousands.

Typically, solving the attribution task requires a predictive
model for y as a function of x, which we assume unknown
in our problem setting. Since y is binary, we consider the
following classification problem:

Definition III.2 (Wafer classifier training). Given a training
dataset D ≜ {(x(n), y(n))}Nn=1, train a classifier p(x) that
predicts the probability of y = 1 (bad) given an input x.

Here, x(n) ∈ RD denotes the set of observed in-line mea-
surement items for the n-th wafer, and y(n) is its corresponding
wafer quality label.

B. Key Data Characteristics

Although the tasks defined above resemble standard attribu-
tion and classification problems, semiconductor manufacturing
introduces specific challenges that must be considered:

1) Wafers are not necessarily independent due to lot- and
batch-based processing.

2) Wafers are processed sequentially, implying an inherent
ordering among measurement tools.

3) Most in-line measurement values are unavailable due to
wafer-, lot-, and batch-wise sampling policies.

The first and second points render many off-the-shelf machine
learning tools ineffective, as most assume sample indepen-
dence and permutation invariance among variables. Regarding
the third point, since wafers are randomly selected for mea-
surement at each tool, the resulting measurement trajectories
are nearly unique for each wafer. Furthermore, in the yield
ramp-up phase, where various processing recipes are tested
simultaneously, the diversity of processing routes is potentially
large. This further complicates model training, as the effective



sample size, defined as the number of wafers per unique pro-
cessing or measurement condition, may be extremely small—
possibly as low as one.

To illustrate the characteristics of a typical wafer dataset, we
summarize key statistics from the dataset used in our empirical
evaluation. As shown in Table I, the dimensionality D far
exceeds the number of wafers, making the prediction task
ill-posed. The extremely high missing rate exacerbates this
challenge.

TABLE I
SUMMARY STATISTICS OF OUR DATASET COLLECTED FROM THE ALBANY

NY CREATES FAB.

N D Average missing rate Prob(y = 1)

572 23 498 94% 51%

IV. PRELIMINARY: SHAPLEY VALUES

Before getting into the details of the proposed approach, this
section reviews existing Shapley value (SV)-based attribution
methods.

A. Definition of SV

The goal of Shapley Value (SV) is to evaluate the contribu-
tion of each input variable to a model’s prediction. Suppose
there are D input variables, denoted as x ≜ (x1, . . . , xD)⊤,
and a prediction model y = f(x), which can produce the
probability p(x) in the classification task defined in Defini-
tion III.2. Formally, the SV for the i-th variable is defined
as [22], [23]

SVi(x
t) =

1

D

D∑
k=1

∑
S∈S(i)

k

(
D − 1

k − 1

)−1

[v(S)− v(S − {i})] ,

(1)

where xt is a test sample at which SV is calculated, and S(i)k

denotes the collection of all index sets of size k (out of the
D members) that include i (Examples are given below). The
notation S−{i} represents the index set obtained by removing
i from S. The dependency on xt indicates that SV offers
a local explanation, meaning that the explanation is about
the specific test sample xt. This contrasts with traditional
correlation analysis, where the relevance to a target variable
y is quantified through a statistic defined on a population of
samples.

In the original game-theoretic definition [9], the term v(S)−
v(S−{i}) quantifies the influence of the i-th player within the
coalition S, assuming that v(S), known as the value function,
represents the outcome achieved by the coalition. Since the
number of such possible sets is

(
D−1
k−1

)
, SVi computes the

average contribution of the i-th variable across all possible
variable combinations. While multiple definitions of v(·) are
possible in XAI applications [22], [23], it is typically chosen
as the prediction function itself, as discussed in the next
subsection.

B. Handling Non-Participating Variables

A critical question when applying SV in XAI tasks is how
to reconcile v(S), which is defined over a subset of variables,
with f(x), which requires a full D-dimensional input. To
be specific, consider the case where (i,D) = (i, 3) and
S = {1, 2}. In SHAP’s default setting, the value function v(S)
evaluated at x = xt is defined as

v({1, 2}) = f(xt
1, x

t
2, x̄3), (baseline Shapley) (2)

where x̄3 is the population mean of x3. In this setting, the
selected variables in S retain their actual values from xt,
while non-selected variables are replaced with default values,
which in this case is the population mean. In other application
domains, alternative default values are used; for example,
in computer vision, pixel values may be set to zero. These
variants are collectively referred to as baseline Shapley values.

Another widely used approach marginalizes the non-
selected variables using training data:

v({1, 2}) = 1

N

N∑
n=1

f(xt
1, x

t
2, x

(n)
3 ), (CE Shapley) (3)

which is known as the conditional expectation (CE) Shapley
value [22].

C. Limitations of SV in Semiconductor Applications

There are two major limitations when applying SV-based
attribution using Eq. (1) to semiconductor manufacturing data.

First, while SV provides a theoretically fair method for
evaluating variable dependencies, it does not account for
the sequential nature of semiconductor processes. In the
present context, a set S can be viewed as a hypothetical
processing route, represented by in-line measurements as
proxies. However, many variable combinations are physically
inadmissible—for instance, pattern formation without etching.
It is unclear whether attribution scores derived from such
inadmissible combinations carry meaningful information or
should be regarded as artifacts.

Second, SV relies on an arbitrarily chosen baseline point.
The use of the population mean as a reference can be problem-
atic, as it disregards the wafer-lot hierarchy. A similar issue
arises with CE Shapley, where averaging over training samples
does not necessarily preserve the structure of semiconductor
processing dependencies.

Beyond these issues, SV is also known to exhibit deviation
insensitivity [24] when the prediction function itself is used
as the value function. This means that while SV is effective
for characterizing the general behavior of f(·), it is not well-
suited for explaining deviations of the form f(xt)−yt, which
is often of primary interest in defect diagnosis tasks.

V. PROPOSED APPROACH

Given the limitations of standard SVs, we propose a novel
SV-based framework for measurement attribution. This section
introduces two key components of the trajectory Shapley
attribution (TSA) framework: lot-aware kernel imputation and
trajectory Shapley values.



A. Lot-Aware Kernel Imputation

As discussed earlier, in-line measurement data contain many
missing entries due to lot-, wafer-, and item-specific sampling
policies. A key challenge is that missing patterns in in-line
measurements are neither purely random nor fully systematic.
In the TSA framework, we adopt a relatively simple yet
effective data imputation approach based on the lot-wafer
hierarchy. This imputation method is crucial, as it defines the
concept of ‘non-participation’ for variables.

Let Wn,m denote the kernel function between wafers n
and m. To compute W , we first define the lot-sharing count
matrix C, where each element Cn,m represents the number of
operations shared between wafers n and m within the same
lot, up to the point where either y(n) or y(m) is measured.
Cn,n corresponds to the total number of operations that wafer
n underwent before the measurement of y(n). Using C, we
define the similarity matrix W based on the Jaccard index:

Wn,m ≜
Cn,m

Cm,m + Cn,n − Cn,m
, n ̸= m. (4)

Each element of W lies within the unit interval [0, 1], with
diagonal elements Wn,n set to zero.

Finally, LAKI imputes a missing element, denoted as x(n)
k =

⊥, using a weighted average based on W :

x
(n)
k ← 1∑

j Wn,j

∑
m

Wn,mx
(m)
k , (5)

where terms with x
(m)
k = ⊥ are excluded from the summation.

If no peers with observed values for item k exist, we set x(n)
k

to x̄k, the mean of item k.

B. Trajectory Shapley Values

Suppose we have a VM model f(x) that predicts an
outcome variable y given a measurement trajectory x. We
generalize the standard SV definition (1) as follows:

si(x
t) =

∑
S∈T (i)

µ(S) [v(S)− v(S − {i})] , (6)

where xt denotes an input trajectory of interest, and T (i)

is the set of all physically admissible process trajectories
that include the i-th measurement item. In semiconductor
manufacturing, physically admissible trajectories are those that
progress sequentially from the first process without skipping
intermediate steps. For example, for (i,D) = (2, 3), the admis-
sible trajectories are (x1, x2) and (x1, x2, x3). The prefactor
µ(S) is a weighting function that averages over all admissible
configurations. To properly determine µ(S), we impose the
sum rule on the trajectory Shapley values:

D∑
i=1

si(x
t) = v(1)− v(∅), (7)

where v(1) and v(∅) denote the value function under full
variable participation and no participation, respectively. Equa-
tions (6) and (7) together define the trajectory Shapley value
within our framework.
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Fig. 2. Results of univariate correlation analysis. Most measurement items
either provide weak signals or have too few samples, highlighting the need
for trajectory-based analysis.

To define the value function, we relabel the index set S
and its complement −S so that x = (xS ,x−S), where the
subvector xS collects all xi’s for i ∈ S. The value function
in TSA, evaluated at x = xt, is then given by:

v(S) = f(xS = xt,x−S =⊥), (TSA) (8)

where x−S =⊥ symbolically represents that the non-
participating variables are treated as missing values. Unlike
standard SV, where missing variables are replaced with a fixed
baseline value, TSA employs LAKI to adaptively impute ⊥
based on the wafer and lot IDs.

Our theoretical analysis has established the following result:

Theorem V.1 (Trajectory Shapley Value). The weighting
function µ(S) is uniquely determined by the condition (7).
With this µ(S), the trajectory Shapley value is given by:

si(x
t) = f(xt

1:i,x
0
(i+1):D)− f(xt

1:(i−1),x
0
i:D), (9)

where xs:e ≜ (xs, xs+1, . . . , xe) for s ≤ e, and ∅ (the
empty set) otherwise. x0

(i+1):D and x0
i:D are baseline values

computed using the LAKI algorithm (5).

The proof is omitted due to space constraints. In the next
section, we apply this attribution score to a good-bad wafer
characterization scenario.

VI. EMPIRICAL EVALUATION

We applied the Trajectory Shapley Attribution (TSA) ap-
proach to a process-limited yield (PLY) root-cause analysis
task for state-of-the-art front-end-of-line (FEOL) processing
routes in the Albany NanoTech fab. In this empirical evalua-
tion, we focused on a specific scenario involving a burst of a
defect type over a certain period. Specifically, we collected
data from N = 572 wafers, approximately half of which
exhibited the defect. A binary target variable y ∈ {0, 1}
was obtained at a PLY measurement point, where y = 1
indicates the presence of a specific defect type, and y = 0
otherwise. The input variables x consisted of upstream in-line
measurements from hundreds of measurement processes.



As shown in Table I, the missing value rate is extremely
high—only about 6% of the entries contain actual measure-
ments. Additionally, the dimensionality of the input space (D)
is much larger than the number of wafers (N ), making the
prediction task highly ill-posed. In such settings, data-hungry
deep learning models are prone to overfitting. Our goal is to
identify which measurement items are most relevant to the
defect burst by computing attribution scores.

A. Baseline: Conventional Univariate Analysis

As a baseline approach, we conducted a conventional uni-
variate correlation analysis. Using the training dataset D, we
trained a separate univariate logistic regression classifier for
each of the D = 23 498 measurement items to predict the
good-bad wafer flag y. No LAKI imputation was used in this
step. Due to missing values, different measurement items had
varying sample sizes, which impacted prediction accuracy. For
each measurement item, we computed the area under the curve
(AUC) score of the receiver operating characteristic (ROC)
curve.

Figure 2 presents the results, where the vertical axis rep-
resents the normalized AUC, defined as |2 × AUC − 1|,
which takes a value of 0 for the random classifier and 1
for the perfect classifier. As shown, most measurement items
produced unreliable results due to insufficient sample sizes
(Region A). Generally, measurement items with larger sample
sizes exhibited weaker predictive performance (Region C).
Although a few items displayed moderate predictive power,
no clear dominant predictor emerged (Region B), providing
limited actionable insights.

B. Training a Good-Bad Classifier

As the first step in the TSA analysis, we trained a binary
classifier in the multivariate setting. To mitigate potential
overfitting issues (see Sec. III-B), we employed ℓ2-regularized
logistic regression to model p(x), the probability of observing
y = 1 (bad wafer). The regularization strength was selected
via cross-validation. With LAKI imputation, the true positive
rate was 0.80, compared to 0.75 without LAKI, demonstrating
the effectiveness of the LAKI strategy.

C. Results of Trajectory Shapley Attribution

Using the trained classifier p(x) and setting f(x) ≜ p(x),
we computed TSA attribution scores for each wafer outside
the training dataset with Eq. (9):

si(x
t) = p(xt

1:i,x
0
(i+1):D)− p(xt

1:(i−1),x
0
i:D). (10)

An effective way to assess the relative importance of each
measurement item is to visualize the scores using a cumulative
attribution plot. Figure 3 shows two examples of such cross-
process TSA visualizations. By leveraging the sum rule (7), we
can visualize how ‘badness’ accumulates as a wafer progresses
through the processing route.
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Fig. 3. Cumulative attribution score, β(τ,xt), defined in Eq. (11), plotted
against process timestamp τ . xt is the vector of inline measurements of the
specified wafer. The plot shows how the baseline prediction p(x0) evolves
into the final prediction p(xt) as time progress.

Specifically, we plot the cumulative attribution score up to
time τ , defined as:

β(τ,xt) ≜ v(∅) +
D∑

k=1

sk(x
t)I(tk ≤ τ), (11)

where tk is the timestamp of the k-th measurement item and
I(·) is the indicator function that equals 1 if the condition in
the parenthesis is satisfied, and 0 otherwise. For the specific
expression in Eq. (10), the sum rule leads to

β(0,xt) = p(x0), β(∞,xt) = p(xt), (12)

assuming that the process starts after τ = 0. These equations
determine the start and end points of the cumulative attribution
plot in Fig. 3.

Notably, certain time points exhibit significant jumps, sug-
gesting potential root causes for favorable or unfavorable
outcomes. In particular, Figure 3(a) indicates that our TSA
approach could have facilitated earlier process termination for
defective wafers, potentially months before reaching the PLY
measurement point.

VII. CONCLUSION

We have proposed the Trajectory Shapley Attribution (TSA)
method as a model-agnostic and interpretable framework for
root-cause analysis in sequential manufacturing processes.

The proposed method addresses two major limitations of
standard Shapley value (SV)-based attribution: reliance on un-
realistic process routes and sensitivity to an arbitrary baseline
point. TSA resolves these issues by introducing two novel
components—lot-aware kernel imputation and trajectory Shap-
ley values. We mathematically demonstrated that the trajectory
Shapley value reduces to a closed-form expression without
combinatorial complexity when the sum rule is imposed.

We demonstrated the practical utility of TSA through a case
study in a good-bad wafer classification task, using real-world
data from the Albany NanoTech fab.

While TSA was developed as a variant of the Shapley
value, other algorithmic approaches may also be effective
for attribution in semiconductor manufacturing. Exploring
alternative methods, such as partial trajectory regression [25],
and establishing a unified framework for defect root-cause
analysis represent promising directions for future research.
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[19] J. Labaien, T. Idé, P.-Y. Chen, E. Zugasti, and X. De Carlos, “Diagnostic
spatio-temporal transformer with faithful encoding,” Knowledge-Based
Systems, vol. 274, p. 110639, 2023.

[20] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von
Arx, M. S. Bernstein, J. Bohg, A. Bosselut, E. Brunskill, et al.,
“On the opportunities and risks of foundation models,” arXiv preprint
arXiv:2108.07258, 2021.

[21] H. Zheng, L. Shen, A. Tang, Y. Luo, H. Hu, B. Du, Y. Wen, and
D. Tao, “Learning from models beyond fine-tuning,” Nature Machine
Intelligence, pp. 1–12, 2025.

[22] M. Sundararajan and A. Najmi, “The many shapley values for model ex-
planation,” in International conference on machine learning, pp. 9269–
9278, PMLR, 2020.

[23] E. Borgonovo, E. Plischke, and G. Rabitti, “The many shapley values
for explainable artificial intelligence: A sensitivity analysis perspective,”
European Journal of Operational Research, 2024.

[24] T. Idé and N. Abe, “Generative perturbation analysis for probabilis-
tic black-box anomaly attribution,” in Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining,
pp. 845–856, 2023.

[25] K. Miyaguchi, M. Joko, R. Sheraw, and T. Idé, “Wafer defect root cause
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