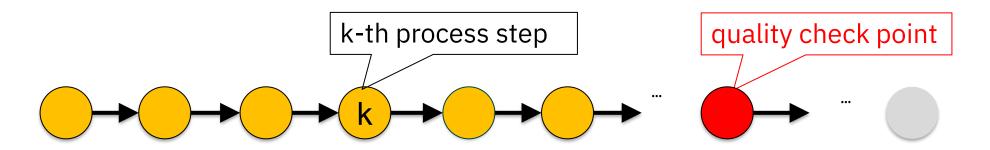


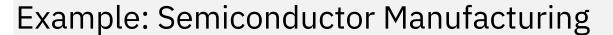
Tsuyoshi (Ide-san) Ide

Partial Trajectory Analysis for Diagnosing Sequential Manufacturing Processes

Head of Data Science, IBM Semiconductors, IBM T. J. Watson Research Center

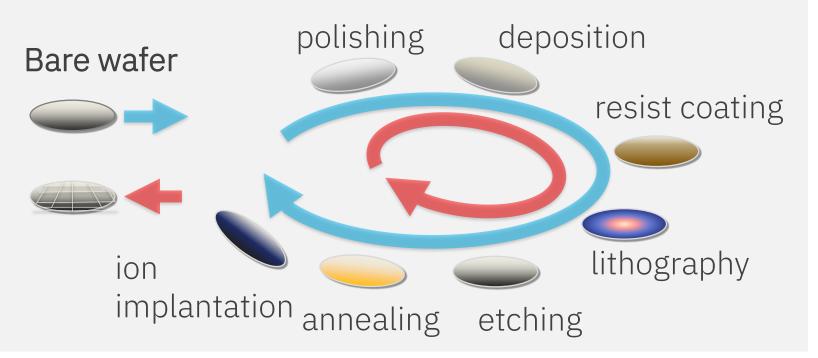
Target task: cross-process defect attribution





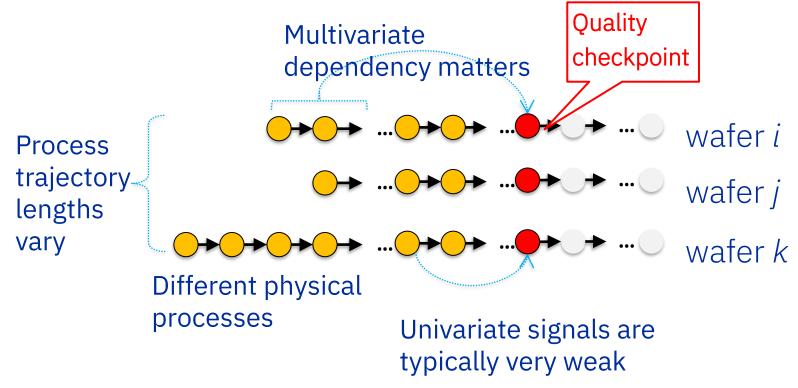
FEOL: device fabrication

BEOL: wiring formation



Target task: cross-process defect attribution

<u>Problem</u>: Given a wafer quality metric value, compute the **attribution score** for each of the upstream process steps.

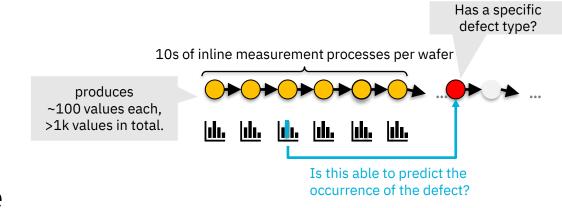


- In current practice...
- The only viable approach is to run as many wafers as possible under varying conditions.
- Then, relatively simple statistical analysis is applied.
- This approach requires significant domain expertise to decide on parameter choices.
- This semi-manual approach is reaching its limits as technology nodes advance.

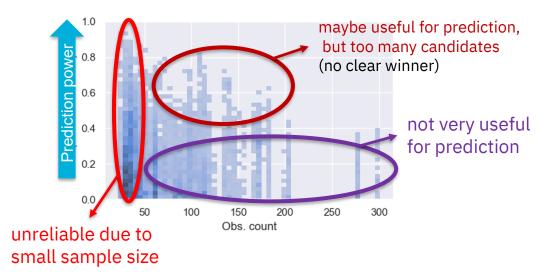
© 2025 IBM Corporation

Univeriate correlation is often not informative

- In test production, 10s of inline measurements produces 1K+ measurement numbers for each wafer.
- Univariate analysis typically does not give strong signal.
 - Trained a univariate binary classifier to distinguish between good and bad wafers.
 - Accuracy tends to decrease as the observation count increases.
- Process engineers usually focus on a limited number of measurement items based on prior knowledge.



<u>Defect occurrence prediction with single measurement values</u>

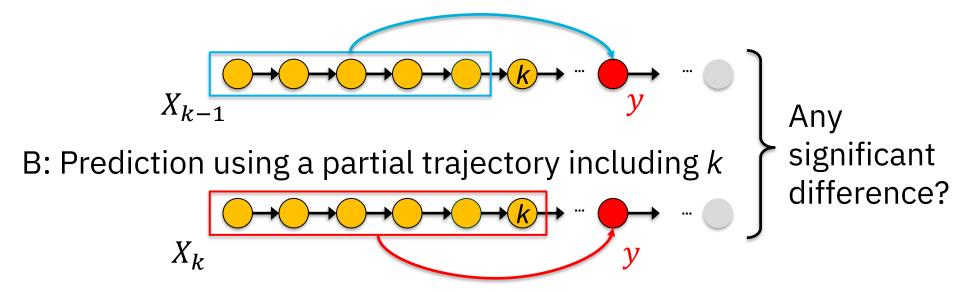


4

Partial trajectory analysis (PTA) approach: Key idea

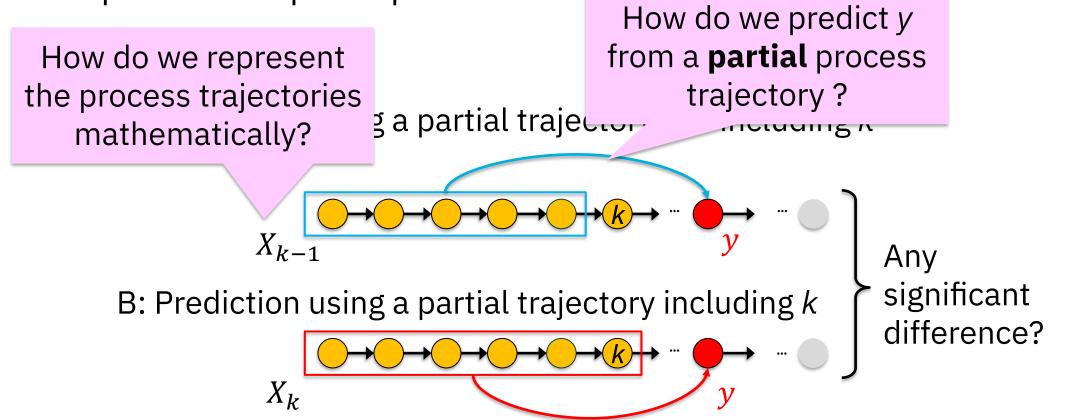
■ PTA computes the attribution score of the k-th process by evaluating the impact of k's "participation" in the process trajectory.

A: Prediction using a partial trajectory **not** including *k*



Partial trajectory analysis (PTA) approach: Key idea

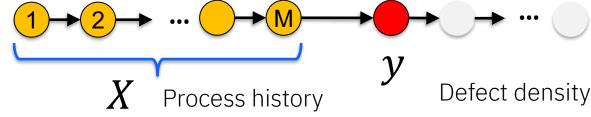
■ PTA computes the attribution score of the k-th process by evaluating the impact of k's "participation" in the process trajectory—



6

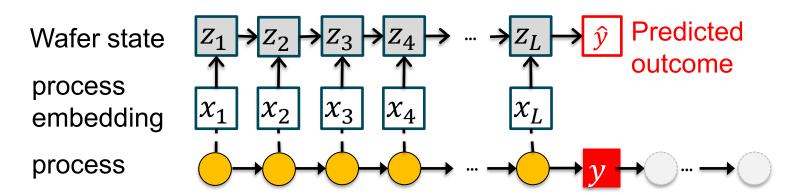
Data assumption and process embedding ("proc2vec")

- Data $D = \{(X^{(n)}, y^{(n)}) \mid n = 1, ..., N\}$
 - o $X^{(n)}$: process trajectory $(x_1^{(n)}, \dots, x_{L^{(n)}}^{(n)})$. Each process is assumed to have a vector representation (embedding).
 - $y^{(n)}$: Product badness such as defect density (a real number).
- How do we get the embeddings?
 - Create a synthetic word for each
 - ✓ "Process token"=eqp_id⊕
 recipe_id⊕ ··· ⊕tool_trace
 - o Employ a transformer-like approach
 - ✓ [Miyaguchi + ASMC 25]



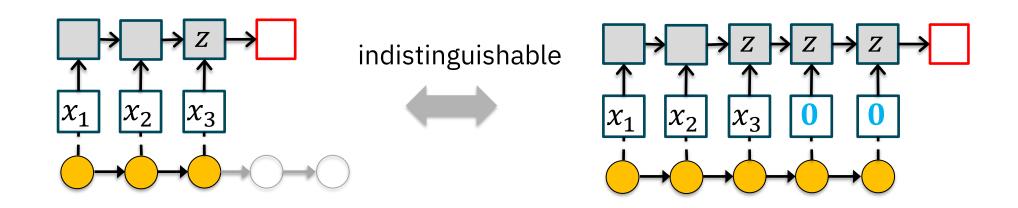
Learning partial trajectory regression model

- Typically, a prediction function has a fixed number of input slots.
 - \circ For 3 processes, it would be like $f(x_1, x_2, x_3)$, a 3-slot function.
 - o Hence, cannot handle process trajectories with different lengths.
- State-space model (or RNN) eliminates this limitation
 - o Partial prediction by a length-k trajectory: $\hat{y} = f(\mathbf{z}_k = \text{RNN}(\mathbf{x}_1, ..., \mathbf{x}_k))$
 - \checkmark f: A parametric function with trainable parameters
 - \checkmark z_k : Latent state vector after observing x_k



Catch: You can't simply zero off downstream processes

- The straightforward use of RNN introduces a significant bias.
- Example:
 - \circ k=3 partial prediction is indistinguishable with k=5 partial prediction with zeroed-off input.
 - i.e., RNN's partial trajectory prediction
 = full trajectory prediction with a zeroed-off process sequence

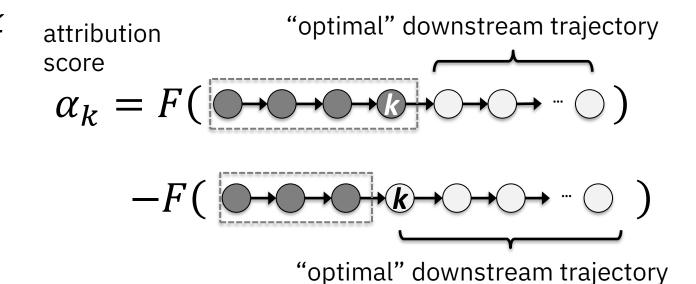


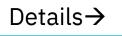
Eliminating the bias of partial trajectory analysis: Potential Loss Analysis (PLA)

PLA: The attribution score for k is evaluated, given an optimal downstream trajectory:

$$\circ \min_{\boldsymbol{x}_{k+1},\ldots,\boldsymbol{x}_L} F(\boldsymbol{z}_k,\boldsymbol{x}_{k+1},\ldots,\boldsymbol{x}_L)$$

- This trajectory optimization problem can be solved by casting it as a reinforcement learning task.
 - → Next page





Ide & Miyaguchi, "Cross-process defect attribution suing potential loss analysis," WSC 25, to appear; https://arxiv.org/abs/2508.00895

Formalizing PLA as a reinforcement learning problem (1/2)

- $\min_{\boldsymbol{x}_{k+1},\dots} F(\boldsymbol{z}_k, \boldsymbol{x}_{k+1}, \dots) = \min_{\boldsymbol{x}_{k+1},\dots} \mathbb{E}\left[\sum_{t=1}^{\infty} C(\boldsymbol{z}_{k+t}) \mid \boldsymbol{z}_k\right]$
 - o terminal reward model: $C(\mathbf{z}) = \begin{cases} y(\mathbf{z}), & z \in \text{(terminal state)} \\ 0, & \text{otherwise} \end{cases}$
- Bellman equation

$$o F^{*}(\mathbf{z}) \equiv \min_{x_{1},....} F(\mathbf{z}, x_{1}, ...) = \min_{x_{1}} \{ C(\mathbf{z}) + \sum_{z_{2}} p(z_{2} | x_{1}, z_{1}) F^{*}(z_{2}) \}$$

transition model (assumed deterministic)

■ The optimization problem we solve (with $F^{\theta}(z)$ approximating $F^{*}(z)$):

$$\circ \max_{\theta} \sum_{\mathbf{z}} \rho(\mathbf{z}) F^{\theta}(\mathbf{z}) \quad \text{s.t.} \quad F^{\theta}(\mathbf{z}) \leq C(\mathbf{z}) + F^{*}(\mathbf{z}'), \ \forall (\mathbf{z} \to \mathbf{z}'),$$

empirical density of **z** (under deterministic assumption)

Details→

Ide & Miyaguchi, "Cross-process defect attribution suing potential loss analysis," WSC 25, to appear; https://arxiv.org/abs/2508.00895

Formalizing PLA as a reinforcement learning problem (2/2)

Final objective function to be maximized

$$R(\theta \mid \mu) = \frac{1}{N} \sum_{n=1}^{N} \left[\frac{\mu}{L^{(n)}} \sum_{t=1}^{L^{(n)}} F^{\theta} \left(z_{t}^{(n)} \right) - \frac{1}{2} \left\{ y^{(n)} - F^{\theta} \left(z_{L^{(n)}}^{(n)} \right) \right\}^{2} - \frac{1}{2} \sum_{t=1}^{L^{(n)} - 1} \left\{ F^{\theta} \left(z_{t+1}^{(n)} \right) - F^{\theta} \left(z_{t}^{(n)} \right) \right\}^{2} \right]$$
squared loss

- This provides the partial prediction function and attribution model simultaneously.
- The time difference of the F function can be directly parameterized:
 - $\circ G^{\theta}(\mathbf{z}_{t}, \mathbf{z}_{t-1}) \equiv F^{\theta}(\mathbf{z}_{t}) F^{\theta}(\mathbf{z}_{t-1}) = \text{ReLU}_{\theta}(\mathbf{z}_{t} \oplus \mathbf{z}_{t-1})$
 - This function provides the attribution score for the k-th process.

12

2nm conductor process defect diagnosis example

- The graphs plot the cumulative attribution score.
 - Big jump = likely root cause
 - The model was trained with 727 wafers.
- PTR approach does not provide meaningful signals.
- PLA successfully detects likely root cause
 - In this case, they correspond to too long waiting hours at a certain piece of equipment.

