IBM Semiconductors

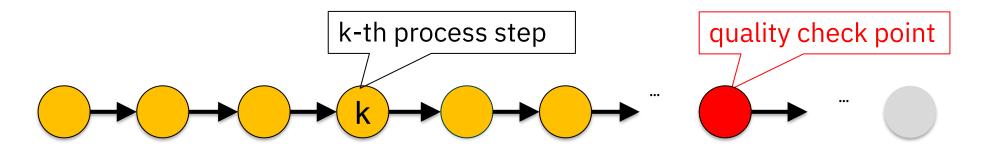
Cross-Process Defect Attribution using Potential Loss Analysis

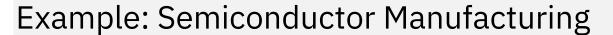
Tsuyoshi ("Ide-san") Ide and Kohei Miyaguchi* IBM Semiconductors, T.J. Watson Research Center *IBM Research – Tokyo (currently with LY Corporation)

Agenda

- Problem description and background
- Interventional causal attribution and its challenges
- Cross-process attribution with potential loss analysis (PLA)

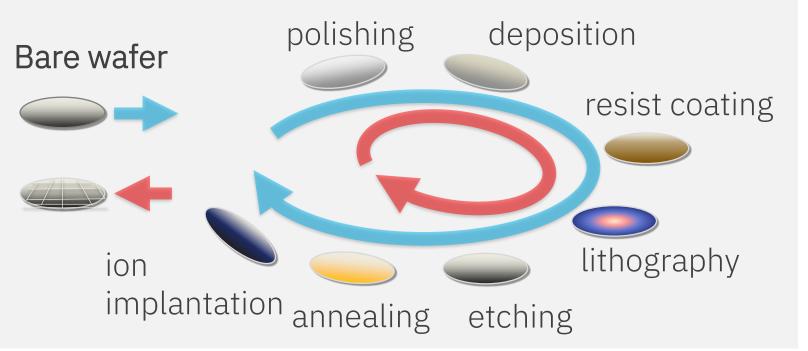
Target task: cross-process defect attribution





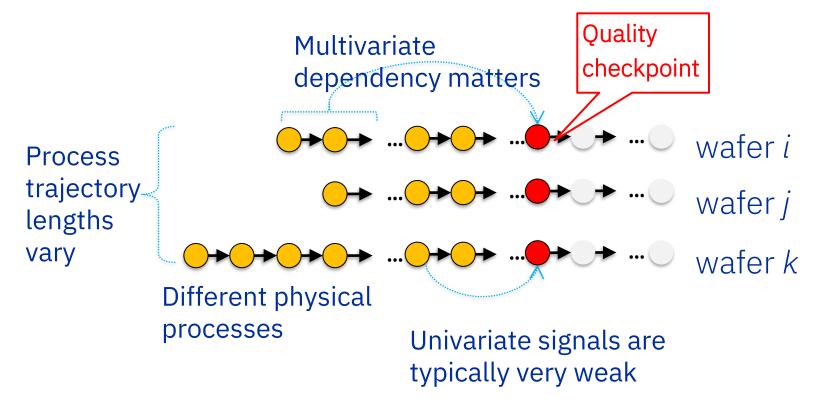
FEOL: device fabrication

BEOL: wiring formation



Target task: cross-process defect attribution

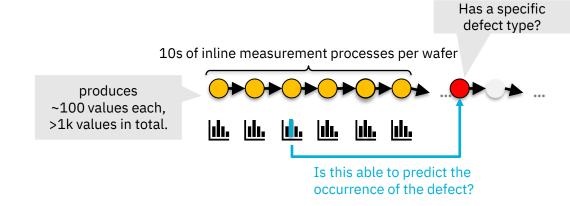
<u>Problem</u>: Given a wafer quality metric value, compute the **attribution score** for each of the upstream process steps.



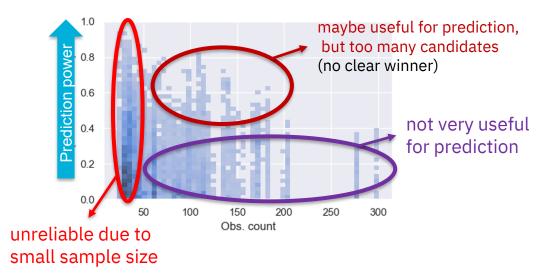
- In current practice...
- The only viable approach is to run as many wafers as possible under varying conditions.
- Then, relatively simple statistical analysis is applied.
- This approach requires significant domain expertise to decide on parameter choices.
- This semi-manual approach is reaching its limits as technology nodes advance.

Univeriate correlation analysis is often not informative

- Univariate analysis typically yields weak predictive signals.
 - Example: measurement-based univariate defect prediction
 - ✓ Trained a univariate binary classifier to distinguish between good and bad wafers.
 - ✓ Accuracy tends to decrease as the observation count increases.
- Traditional correlation metrics apply to populations, not to individual wafers.
 - We need a wafer-wise diagnostic algorithm.



<u>Defect occurrence prediction with single measurement values</u>



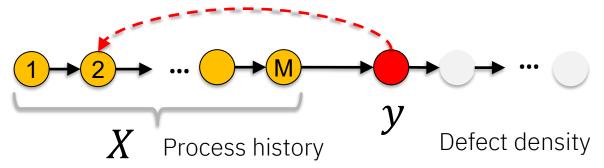
Agenda

- Problem description and background
- Interventional causal attribution and its challenges
- Cross-process attribution with potential loss analysis (PLA)

Defect attribution: Data assumptions and problem setting

- Data $D = \{(X^{(n)}, y^{(n)}) \mid n = 1, ..., N\}$
 - o $X^{(n)}$: process trajectory $(x_1^{(n)}, \dots, x_{L^{(n)}}^{(n)})$. Each process is assumed to have a vector representation (\rightarrow discussed later).
 - o $y^{(n)}$: Product badness such as defect density (a real number).
- Task: wafer-wise defect attribution
 - Given a wafer quality metric value, compute the <u>attribution score</u> for each of the process steps.

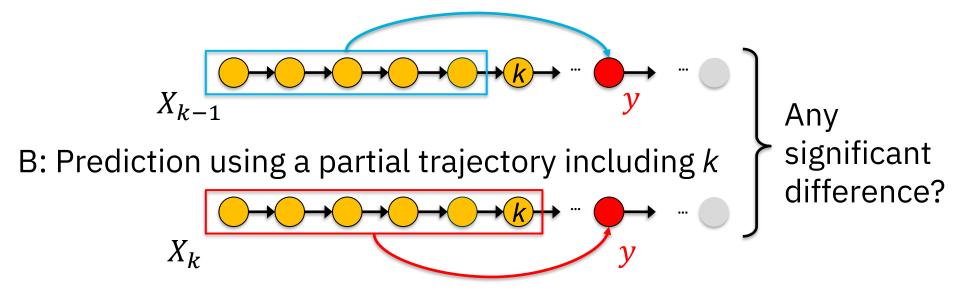
How much is this step responsible for producing a bad wafer?



Interventional Causal Attribution with Partial trajectory regression (PTR)

■ PTR computes the attribution score of the k-th process by evaluating the impact of k's "participation" in the process trajectory.

A: Prediction using a partial trajectory **not** including *k*



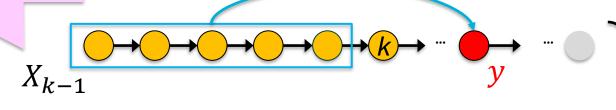
Interventional Causal Attribution with Partial trajectory regression (PTR)

PTR computes the attribution score of the k-th process by evaluating

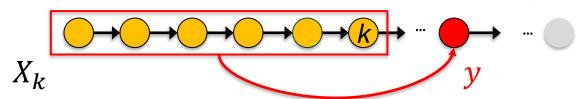
the impact of 122 "narticipation" in the proce How do we represent the process trajectories mathematically?

ising a partial trajectory **nr**

How do we predict y from a **partial** process trajectory?



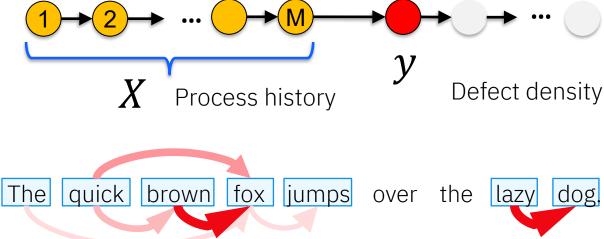
B: Prediction using a partial trajectory including *k*



Any significant difference?

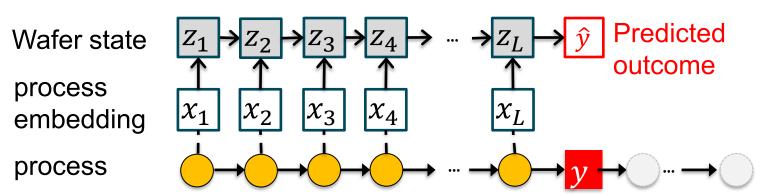
Representing process trajectories as vector sequences: Process embedding ("proc2vec")

- Approach 1: Use measurement data (e.g., CDs) as a surrogate for process steps.
 - o Straightforward, but data may have many missing entries due to wafer sampling.
- Approach 2: Use process data and apply (deep) embedding.
 - $\circ x = ReLU (Wu + b),$
 - ✓ u: some process data; W, b: trainable parameters
 - Data hungry, prone to overfit.
- Approach 3: Symbolic embedding
 - Create a synthetic process token
 - "Process token"=eqp_id⊕
 recipe_id⊕ · · · ⊕tool_trace
 - Employ multidimensional scaling based on a similarity matrix among the tokens



Learning partial trajectory regression model

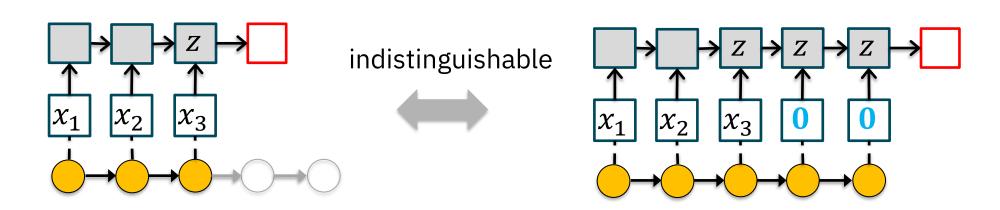
- Typically, a prediction function has a fixed number of input slots.
 - \circ For 3 processes, it would be like $f(x_1, x_2, x_3)$, a 3-slot function.
 - o Hence, cannot handle process trajectories with different lengths.
- State-space model (or RNN) eliminates this limitation
 - o Partial prediction by a length-k trajectory: $\hat{y} = f(\mathbf{z}_k = \text{RNN}(\mathbf{x}_1, ..., \mathbf{x}_k))$
 - \checkmark f: A parametric function with trainable parameters
 - \checkmark z_k : Latent state vector after observing x_k
- Off-the-shelf RNN (e.g., LSTM, GRU) models need adjustments.
 - → next page



© 2025 IBM Corporation

Catch: You can't simply zero off downstream processes

- RNNs are generally data hungry. Careful model customization is needed.
 - Process timestamp needs special treatment (→ paper)
- RNNs may introduces a significant bias.
 - \circ Example: k=3 partial prediction is indistinguishable with k=5 partial prediction with zeroed-off input.
 - ✓ i.e., RNN's partial trajectory prediction = full trajectory prediction with a zeroed-off process sequence



Agenda

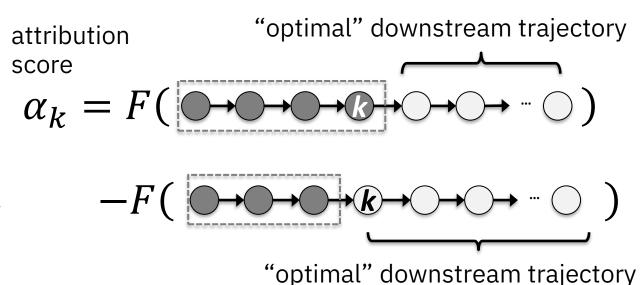
- Problem description and background
- Interventional causal attribution and its challenges
- Cross-process attribution with potential loss analysis (PLA)

Eliminating the bias of partial trajectory analysis: Potential Loss Analysis (PLA)

PLA: The attribution score for k is evaluated, given an optimal downstream trajectory:

$$\circ \min_{\boldsymbol{x}_{k+1},\ldots,\boldsymbol{x}_L} F(\boldsymbol{z}_k,\boldsymbol{x}_{k+1},\ldots,\boldsymbol{x}_L)$$

- \checkmark \mathbf{z}_k : latent wafer state at process k
- \checkmark We don't use $F(z_k, 0, ..., 0)$.
- This trajectory optimization problem can be solved as a Bellman equation.
 - → Next page



Formalizing PLA as a reinforcement learning problem (1/2)

- $\min_{\boldsymbol{x}_{k+1},\dots} F(\boldsymbol{z}_k, \boldsymbol{x}_{k+1}, \dots) = \min_{\boldsymbol{x}_{k+1},\dots} \mathbb{E}[\sum_{t=1}^{\infty} C(\boldsymbol{z}_{k+t}) \mid \boldsymbol{z}_k]$
 - o terminal reward model: $C(\mathbf{z}) = \begin{cases} y(\mathbf{z}), & z \in \text{(terminal state)} \\ 0, & \text{otherwise} \end{cases}$
- Bellman equation

$$o F^{*}(\mathbf{z}) \equiv \min_{\mathbf{x}_{1}, \dots} F(\mathbf{z}, \mathbf{x}_{1}, \dots) = \min_{\mathbf{x}_{1}} \{ C(\mathbf{z}) + \sum_{\mathbf{z}_{2}} p(\mathbf{z}_{2} \mid \mathbf{x}_{1}, \mathbf{z}_{1}) F^{*}(\mathbf{z}_{2}) \}$$

transition model (assumed deterministic)

■ The optimization problem we solve (with $F^{\theta}(z)$ approximating $F^{*}(z)$):

$$\circ \max_{\theta} \sum_{\mathbf{z}} \rho(\mathbf{z}) F^{\theta}(\mathbf{z}) \quad \text{s.t.} \quad F^{\theta}(\mathbf{z}) \leq C(\mathbf{z}) + F^{*}(\mathbf{z}'), \ \forall (\mathbf{z} \to \mathbf{z}'),$$

empirical density of **z** (under deterministic assumption)

Formalizing PLA as a reinforcement learning problem (2/2)

Final objective function to be maximized

$$R(\theta \mid \mu) = \frac{1}{N} \sum_{n=1}^{N} \left[\frac{\mu}{L^{(n)}} \sum_{t=1}^{L^{(n)}} F^{\theta} \left(z_{t}^{(n)} \right) - \frac{1}{2} \left\{ y^{(n)} - F^{\theta} \left(z_{L^{(n)}}^{(n)} \right) \right\}^{2} - \frac{1}{2} \sum_{t=1}^{L^{(n)}-1} \left\{ F^{\theta} \left(z_{t+1}^{(n)} \right) - F^{\theta} \left(z_{t}^{(n)} \right) \right\}^{2} \right]$$
squared loss

- This provides the partial prediction function and attribution model simultaneously.
- The time difference of the F function can be directly parameterized:

$$\circ G^{\theta}(\mathbf{z}_{t}, \mathbf{z}_{t-1}) \equiv F^{\theta}(\mathbf{z}_{t}) - F^{\theta}(\mathbf{z}_{t-1}) = \text{ReLU}_{\theta}(\mathbf{z}_{t} \oplus \mathbf{z}_{t-1})$$

- This function provides the attribution score for the k-th process.
 - ✓ Yields a positive number

2nm process defect diagnosis example

- The graphs plot the cumulative attribution score.
 - Big jump = likely root cause
 - The model was trained with 727 wafers.
- PTR approach does not provide meaningful signals.
- PLA successfully detects likely root cause
 - In this case, they correspond to too long waiting hours at a certain piece of equipment.

