

(12) United States Patent Ide et al.

(10) **Patent No.:**

US 7,483,934 B1

(45) **Date of Patent:**

Jan. 27, 2009

(54) METHODS INVOLVING COMPUTING CORRELATION ANOMALY SCORES

(75) Inventors: Tsuyoshi Ide, Kanagawa (JP); Spyridon

Papadimitriou, White Plains, NY (US)

Assignee: International Busniess Machines

Corporation, Armonk, NY (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

Appl. No.: 11/959,073

(22)Filed: Dec. 18, 2007

(51) Int. Cl. G06F 17/15

(2006.01)

U.S. Cl. 708/422

Field of Classification Search 708/422–426 See application file for complete search history.

(56)References Cited

U.S. PATENT DOCUMENTS

5,257,364 5,267,271 2005/0143976 2005/0283511	A * A * A1 A1*	10/1993 11/1993 6/2005 12/2005	Fan et al 708/306
- , ,			
2006/0161592	$\mathbf{A}1$	7/2006	Ertoz et al.
2007/0005256	A1*	1/2007	Lincoln et al 702/19
2007/0214133	A1*	9/2007	Liberty et al 707/5

OTHER PUBLICATIONS

Kenji et al., Dynamic Syslog Mining for Network Failure Monitoring, Aug. 21-24, 2005, ACM, pp. 499-508.*

J. Goldberger, S. Roweis, G. Hinton and R. Salakhutdinov. Neighbourhood Components Analysis, In Advances in Neural Information Processing Systems, 2005, pp. 513-520.

* cited by examiner

Primary Examiner—Chat C Do

(74) Attorney, Agent, or Firm—Cantor Colburn LLP; Vazken Alexanian

(57)ABSTRACT

An exemplary method for computing correlation anomaly scores, including, defining a first similarity matrix for a target run of data, the target run of data includes an N number of sensors, defining a second similarity matrix for a reference run of data, the target run of data includes the N number of sensors, developing a k-neighborhood graph N, of the i-th node for the target run of data, wherein the k-neighborhood graph of the i-th node is defined as a graph comprising the i-th node and its k-nearest neighbors (NN), developing a k-neighborhood graph \overline{N}_i of the i-th node for the reference run of data, defining a probability distribution p(j|i), wherein p(j|i) is the probability that the j-th node becomes one of the k-NN of the i-th node, coupling the probability between the i-th node and the neighbors of the i-th node, determining an anomaly score of the i-th node, and determining whether the target run of data has changed from the reference run of data responsive to determining the anomaly score of the i-th node.

1 Claim, 2 Drawing Sheets

