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1 Introduction
This is a supplementary document for the paper [8], named Prob-
abilistic Two-Level Anomaly Detection for Correlated Systems, in
21st European Conference on Artificial Intelligence (ECAI 2014).
This document makes more detailed discussions on the optimization
of the probabilistic model, the calculation of the anomaly score, and
the experiment for this paper.

2 Optimization
As shown in Eq. (9) in Section 4.1 of the paper, the posterior distri-
bution of Y is defined below.

p(Y|X) ∝ p(X|Y)p(Y) (1)

The MAP estimate of Y can be obtained by minimizing the negative
logarithm of Eq. (1). By removing out terms unrelated to Z and W,
the objective function is rewritten as:

J =

D∑
i=i

N∑
j=1

Sij(Xij − (WZ)ij)
2 + N ln det(WWT )

+ tr
(
(WWT )−1(WZ)L(WZ)T

)
(2)

where Sij represents α−2
Vij

. In this section, we mainly discuss the op-
timization of Eq. (2). Since both W and Z are regarded as variables,
we can not give closed-form solutions. However, Eq. (2) can be iter-
atively optimized with respect to Z by fixing W, and vice versa. By
doing so, a local optimal can be reached since the value of Eq. (2)
decreases or stays steadily even after a small number of updates.

2.1 Optimize Z for a fixed W.
To simplify the third term of Eq. (2), it is natural to assume W is
a full rank matrix, so that W is invertible. We can then succinctly
write the third term of Eq. (2) into the following form.

tr
(
(WWT )−1(WZ)L(WZ)T

)
= tr

(
ZLZT

)
(3)

Fixing W, we then optimize the objective function with respect to
Z:

JZ =

D∑
i=i

N∑
j=1

Sij(Xij − (WZ)ij)
2 + tr

(
ZLZT

)
(4)
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By making the derivative with respect to Z (see Appendix. A), we
have

∂JZ

∂Z
= −2WT (S ◦X) + 2WT (S ◦Y) + 2ZL (5)

where A ◦ B represents Hadamard product for which (A ◦ B)ij =
AijBij . We are unable to obtain a closed-form solution for Z by
setting Eq. (5) to zero. Therefore, we attempt to utilize the gradient-
based method in which Z is updated as follows.

Zt+1 = Zt − µ
∂JZ

∂Zt
(6)

where µ is a constant that indicates the step. Z is iteratively updated
until the convergence condition is satisfied.

2.2 Optimize W for a fixed Z.
When Z is fixed, the objective function Eq. (2) with respect to W
can be written as:

JW =

D∑
i=i

N∑
j=1

Sij(Xij − (WZ)ij)
2 + N ln det(WWT ) (7)

According to [7], ln det is a concave function. Thus, we consider
relaxing the ln det term into a convex form. We relax Eq. (7) and de-
compose it into D separable optimization problems (see Appendix.
B). That is, for i = 1, 2, . . . , D, we have

J i
W =

N∑
j=1

Sij(Xij − ŵizj)
2 + N ||ŵi||2 (8)

where ŵi represents the i-th row of W, and zj is the j-th column of
Z. We can see that Eq. (8) is a weighted least squares problem with a
l2 regularization for ŵi. We can obtain the closed-form solution for

each ŵi by setting ∂Ji
W

∂ŵi
= 0. It can be represented as

ŵi =

N∑
j=1

SijXijz
T
j

N∑
j=1

SijzT
j zj + N

(9)

To maintain W as a full rank matrix, we define a SVD decompo-
sition for Wt in the t-th iteration as Wt = UΣV . The diagonal
elements of Σ represent the singular values of Wt, which are de-
noted as [γ1, γ2, . . . , γD]. If Wt is a low rank matrix, some singular
values will be zeros. To keep Wt as a full rank matrix, we define Σ

′

for which the diagonal element γi is replaced with a nonzero value if



γi is zero. We then have Wt+1 in the t + 1-th iteration as Wt+1 =

UΣ
′
V . It can easily be proved that ||Wt+1−Wt||22 =

d∑
i=1

γ2
i where

d denotes the number of zero singular values for Wt. If γi is set to
be a reasonably small value, e.g., 0.01, ||Wt+1−Wt||22 is then quite
small.

3 Anomaly Score
Compared with Section 4.2 of the paper, more explanations on the
reason of choosing Eq. (10) and Eq. (11) are made, when calculating
the anomaly scores for instances and variables, respectively.

With respect to the abnormal scores of variables, it is natural to as-
sume that the variables in an instance are jointly Gaussian, since X
follows a matrix-variate normal distribution with noise. Therefore,
given an instance, we can take the conditional distribution of a vari-
able given other variables as the abnormal score for the variable. As
mentioned before, the generative model tends to give high probabil-
ities to the normal variables and low probabilities to the abnormal
variables. By using negative of logarithm, the abnormal variable is
then given a high anomaly score while a normal variable is given a
low anomaly score.

We obtain the optimal W from Eq. (2). The precision matrix ΛΛΛ for
the distribution on X is calculated as (WWT + β2I)−1. Given an
instance x, the abnormal scores s = [s1, s2, . . . , sD] for all variables
are calculated (see Appendix. C) as:

s ≡ s0 +
1

2
diag(ΛΛΛxxTΛΛΛP−1) (10)

where diag(·) represents a vector in which the elements correspond
to the diagonal elements of a matrix. The matrix P = diag2(ΛΛΛ)
where diag2(·) denotes a matrix with the diagonal elements of a ma-
trix and zero off-diagonal elements. The vector s0 is defined so that
(s0)i = 1

2
ln 2π

ΛΛΛi,i
.
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Figure 1: Toy example

In the calculation of the anomaly scores for the instances, we first
normalize s, which is denoted by b = [b1, b2, . . . , bD]. A larger
value of bi represents a higher probability of an abnormal variable,
and the abnormal variables with high probabilities are also expected
to contribute more to a high anomaly score of an instance than the
other normal variables with low probabilities. Rényi entropy [6] of
order λ satisfies this requirement, since a larger value of the order λ
gives an entropy value that is increasingly determined by the higher

probability events. This is also the reason that we do not use other
entropies, such as Shannon entropy, etc. Given an instance x, its ab-
normal score derived from Rényi entropy of order λ is defined as

t ≡ 1

λ− 1
ln

(
D∑

i=1

bλ
i

)
. (11)

We empirically set λ to be 10 in the experiments.
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Figure 2: Convergence in toy example

4 Experiments
We first generate a toy example to analyze the behaviors of methods
before we do experiments on the Train Sensor data for a case study.

4.1 Toy Example
The toy data set was generated as follows. We have two classes data
drawn from Gaussian distributions, as shown in Figure 1. For the
blue circle points, the mean and covariance matrix are [5, 5] and
diag(0.05, 0.05), respectively. For the red star points, its mean and
covariance matrix are [0, 0] and [1, 0.9; 0.9, 1], respectively. We re-
gard the blue circle points as the abnormal data and the red star points
are the normal data. We can see that the whole data are of high cor-
relation and the correlation matrix is [1, 0.98; 0.98, 1].

We call our method Probabilistic Two-Level Anomaly Detection
(PTLAD). For the comparison, we consider three methods. The first
one is an extension of Glasso [4], called EGlasso. Although Glasso
was proposed to detect the abnormal in variable level for two graphs,
it can easily be extended to detect the abnormal at the variable level
for instances by using Eq. (10), since the precision matrix is known.
The second one is an supervised extension of GLasso, called SE-
Glasso, that involves three steps. (1) Remove the high correlation
information upon the first k (k = 1, . . . , D) directions with main
variances. Note that k = 0 indicates keeping all information; (2)
Derive the data in a discriminative subspace by using supervised in-
formation; and (3) Estimate the empirical covariance matrix and per-
form EGlasso. The third one is JSPCA [5]. Since the first step of
SEGlasso (k ≥ 1) has a similar effect with the methods [5, 3], we
infer that EGlasso (k ≥ 1) and JSPCA would fail when the abnormal
data locate in the same directions with the main variances.

Figure 3 shows the abnormal scores for the 1st variable and the
2nd variable, in which the anomaly scores for the abnormal instances
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(a) Scores of 1st variable

100 200 300 400 500 600
1.6

1.8

2

2.2

2.4

2.6

2.8

3

data idx

S
co

re
s 

fo
r 

2n
d 

V
ar

ia
bl

e

 

 

Labeled Normal
Labeled Abnormal

(b) Scores of 2nd variable

Figure 3: Abnormal scores for variables

are obviously higher than those for most of the normal instances, as
shown in Figure 3a and Figure 3b. We may infer that Eq. (10) is ef-
fective in calculating the abnormal scores for the variables. Figure 4a
and Figure 4b show ROCs for the various methods of anomaly detec-
tion for the 2nd variable and for the instances, respectively. PTLAD
is able to achieve the best performances in the two cases. It is worth
noting that SEGlasso (k = 0) outperforms SEGlasso (k = 1) and
JSPCA. The reason is probably that SEGlasso (k = 1) and JSPCA
remove the information on the direction with the maximal variance
such that the abnormal and normal instances are highly blended in
the remanding subspace.

Figure 2 shows PTLAD empirically converges fast. Note that we
re-scale the values into the range (0, 1) by simply using val./max.
for a better illustration, where val. and max. represent the value of
each term and the maximum value during the iterations, respectively.
We can see that the value of the objective function tends to be stable
after only three iterations.

4.2 Experiments on Case Study
In this experiment, we use the train sensor data set which is repro-
duced from a real train sensor data. The real data is collected by 40
temperature sensors set in different gear boxes of a train. To eliminate
the side-effect of air temperature, we subtract all the temperature val-
ues by air temperature. In the real data set, we have 7 normal labeled
data and 1 abnormal labeled data with 7-th abnormal variable, oth-
ers are unlabeled data. We created abnormal instances and variables
without loss of generality. We defined a random variable following a
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(a) ROC for 2nd variable
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(b) ROC for instances

Figure 4: ROC Performance

Gaussian distribution ϕ ∼ N (5, 0.5). We created 365 artificial ab-
normal data by randomly adding ϕ to one or two variables, such that
the variable(s) are regarded as abnormal one(s). In statistics, each
variable is generally labeled as abnormal one in 10 samples. This
means that each variable has 10 chances labeled as abnormal after
the artificial processing. According to experts’ experiences, the unla-
beled data is more likely to be normal data. Therefore, for the setting
of similarity matrix G, θ and δ are set to be 0.5 and 0.8, respectively.
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Figure 5: Train: ROC Curve



The parameter settings for PTLAD are defined as: β = 1, α1 =
0.1, α2 = 10, and α3 = 1. We can see from Figure 5 that the Area
Under Curve (AUC) of PTLAD is obviously larger than those of
other methods. Since the performances of SEGlasso (k=1) and SE-
Glasso (k=0) are very similar, we do not show the performance of
SEGlasso (k=0) in this experiment. Figure 7a and Figure 7b show
the abnormal scores for the 1st variable and the 7-th variable, respec-
tively. We can see that the score of ‘labeled abnormal’ data in the
7-th variable is much higher than those of other normal data, while
its score in the 1st variable is similar to those of other normal data.
This is consistent with the fact that only the 7-th variable of the ‘la-
beled abnormal’ data is abnormal. We can also see that the scores
of the ‘artificial abnormal’ data in both the 1st and 7-th variables
are relatively higher than those of the other normal data. Since the
unlabeled data is roughly regarded as normal data, the scores of the
‘unlabeled normal’ data are similar to those of ‘labeled normal’ and
‘artificial normal’. The abnormal scores for the other 38 variables are
not shown, since their score distributions are similar to that of the 1st
variable. We employ Signal to Noise Ratio (SNR) to evaluate the dif-
ferences between the anomaly scores for normal and abnormal data.
The higher value of SNR has, the larger the differences on scores
between the normal data and abnormal data. Table 1 presents SNRs
for the instances and the average values over 40 variables. We can
see that SNRs for PTLAD are larger than those of the other methods,
which shows the effectiveness of PTLAD for anomaly detection at
both the instance and variable levels. Figure 6 also shows that PT-
LAD empirically converges within a limited number of iterations.
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Figure 6: Train: Convergence

Table 1: SNRs for variables and instances

Type PTLAD SEGlasso (k=1) EGlasso JSPCA
Ave. Var. 25.58 3.22 3.22 9.30
Instance 4.14 1.49 0.39 0.60

We also analyze the parameter setting of the noise degrees for nor-
mal data, abnormal data, and unlabeled data. Each αi (i = 1, 2, 3)
changes its value in a searching grid [100, 10, 1, 0.1, 0.01]. For a
better illustration, the axises are plotted as 1/(1 + αi). Figure 8a
presents the changes in the average SNRs over 40 variables when
the noise degrees for the normal and unlabeled data, say α1 and α3,
vary and the noise degree for the abnormal data is fixed at 10. We
can see that, when α1 approaches 0.01, the average SNRs over 40
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Figure 7: Abnormal scores for the variables

variables remain the highest. We also examine the situation in which
the noise degree for the normal data is fixed at 0.01, as shown in
Figure 8b. This shows that the changes for the noise degree of the
abnormal and unlabeled data do not distinctly influence the perfor-
mance. Therefore, we can infer that the noise degree for the normal
data is the most important parameter compared with the other two.
As mentioned before, this is also consistent with our expectation that
the generative model tends to give a bias to the normal data.

Appendix: A

Since Y = WZ, Yij can be represented by Wi,∗Z∗,j , where Wi,∗
denotes the i-th row of W and Z∗,j denotes the j-th column of Z.
The derivative for the first term of Eq. (4) with respect to Zij can be
written as follows.

∂P

∂Zij
=

∂

∂Zij

D∑

d=1

N∑
n=1

Sdn(Xdn −Wd,∗Z∗,n)2 (12)

= −2

D∑

d=1

SdjXdjWdi + 2

D∑

d=1

SdjWd,∗Z∗,jWdi

= −2

D∑

d=1

(S ◦X)djWdi + 2

D∑

d=1

(S ◦Y)djWdi

= −2WT (S ◦X) + 2WT (S ◦Y)
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Figure 8: Analysis for the noise degrees

Appendix: B
Since W is a full rank matrix, WWT would be a symmetric positive
definite matrix. By using the equality tr(ln(A)) = ln(det(A)) [1]
for a symmetric matrix A, we have

tr
(
ln(WWT )

)
= ln det(WWT ) (13)

tr
(
ln(WWT )

)
can be written as

D∑
i=1

ln(ŵiŵ
T
i ) where ŵiŵ

T
i =

||ŵi||2. By using the inequality ln(x) ≤ x + 1, we can relax Eq. (7)
and decompose it into D separable optimization problems as shown
in Eq. (8).

Appendix: C
Given the precision matrix ΛΛΛ and an instance x, the probability for x
is calculated as

p(x|000, ΛΛΛ) =
(detΛΛΛ)

1
2

(2π)
D
2

exp(−1

2
xTΛΛΛx)

We use the conditional distribution for p(xi) as an example. Accord-
ing to the marginal and conditional distribution given Gaussian dis-
tribution [2], we have

p(x1|x2, . . . , xD, ΛΛΛ) = N (x1| − 1

ΛΛΛ1,1

D∑
i=2

ΛΛΛ1,ixi,
1

ΛΛΛ1,1
)

By taking a negative logarithm, we obtain

− ln p(x1|x2, . . . , xD, ΛΛΛ) =
1

2
ln

2π

ΛΛΛ1,1
+

1

2ΛΛΛ1,1

(
D∑

i=1

ΛΛΛ1,ixi

)2

Similarly, we can easily derive the conditional distributions for p(xi)
(x = 2, 3, . . . , D).
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